Украшения. Аксессуары. Дизайн ногтей. Цвета. Нанесение. Ногти

Определение угла между двумя пересекающимися прямыми. Углы с сонаправленными сторонами

Определение

Геометрическая фигура, состоящая из всех точек плоскости, заключёнными между двумя лучами выходящими из одной точки, называется плоским углом .

Определение

Углом между двумя пересекающимися прямыми называется величина наименьшего плоского угла при пересечении данных прямых. Если две прямые параллельны, то угол между ними принимается равным нулю.

Величина угла между двумя пересекающимися прямыми (если измерять плоские углы в радианах) может принимать значения от нуля до $\dfrac{\pi}{2}$.

Определение

Углом между двумя скрещивающимися прямыми называется величина, равная углу между двумя пересекающимися прямыми, параллельными скрещивающимся. Угол между прямыми $a$ и $b$ обозначается $\angle (a, b)$.

Корректность введённого определения следует из следующей теоремы.

Теорема о плоских углах с параллельными сторонами

Величины двух выпуклых плоских углов с соответственно параллельными и одинаково направленными сторонами равны.

Доказательство

Если углы развёрнутые, то они оба равны $\pi$. Если они не развёрнутые, то отложим на соответственных сторонах углов $\angle AOB$ и $\angle A_1O_1B_1$ равные отрезки $ON=O_1ON_1$ и $OM=O_1M_1$.

Четырёхугольник $O_1N_1NO$ является параллелограммом, так как его противоположные стороны $ON$ и $O_1N_1$ равны и параллельны. Аналогично, четырёхугольник $O_1M_1MO$ является параллелограммом. Отсюда $NN_1 = OO_1 = MM_1$ и $NN_1 \parallel OO_1 \parallel MM_1$, следовательно, $NN_1=MM_1$ и $NN_1 \parallel MM_1$ по транзитивности. Четырёхугольник $N_1M_1MN$ - параллелограмм, так как его противоположные стороны равны и параллельны. Значит, и отрезки $NM$ и $N_1M_1$ равны. Треугольники $ONM$ и $O_1N_1M_1$ равны по третьему признаку равенства треугольников, значит, и соответственные углы $\angle NOM$ и $\angle N_1O_1M_1$ равны.

Состоящая из двух различных лучей, выходящих из одной точки. Лучи наз. сторонами У., а их общее начало - вершиной У. Пусть [ ВА ),[ ВС ) - стороны угла, В - его вершина, - плоскость, определяемая сторонами У. Фигура делит плоскость на две фигуры Фигура i==l, 2, также наз. У. или плоским углом, наз. внутренней областью плоского У.
Два угла наз. равными (или конгруэнтными), если они могут быть совмещены так, что совпадут их соответствующие стороны и вершины. От любого луча на плоскости в данную сторону от него можно отложить единственный У., равный данному У. Сравнение У. осуществляется двумя способами. Если У. рассматривается как пара лучей с общим началом, то для выяснения вопроса, какой из двух У. больше, необходимо совместить в одной плоскости вершины У. и одну пару их сторон (см. рис. 1). Если вторая сторона одного У. окажется расположенной внутри другого У., то говорят, что первый У. меньше, чем второй. Второй способ сравнения У. основан на сопоставлении каждому У. нек-рого числа. Равным У. будет соответствовать одинаковое градусов или (см. ниже), большему У.- большее число, меньшему -меньшее.

Два У. наз. смежными, если у них общая вершина и одна сторона, а две другие стороны образуют прямую (см. рис. 2). Вообще, У., имеющие общую вершину и одну общую сторону, наз. прилежащими. У. наз. вертикальными, если стороны одного являются продолжениями за вершину сторон другого У. Вертикальные У. равны между собой. У., у к-рого стороны образуют прямую, наз. развернутым. Половина развернутого У. наз. прямым У. Прямой У. можно эквивалентно определить иначе: У., равный своему смежному, наз. прямым. Внутренняя плоского У., не превосходящего развернутого, является выпуклой областью на плоскости. За единицу измерения У. принимается 90-я доля прямого У., наз. градусом.

Используется и т. мера У. Числовое значение радианной меры У. равно длине дуги, высекаемой сторонами У. из единичной окружности. Один радиан приписывается У., соответствующему дуге, к-рой равна ее радиусу. Развернутый У. равен радиан.
При пересечении двух прямых, лежащих в одной плоскости, третьей прямой образуются У. (см. рис. 3): 1 и 5, 2 и 6, 4 и 8, З и 7 - наз. соответственными; 2 и 5, 3 и 8 - внутренними односторонними; 1 и 6, 4 и 7 - внешними односторонними; 3 и 5, 2 и 8- внутренними накрест лежащими; 1 и 7, 4 и 6 - внешними накрест лежащими.

В практич. задачах целесообразно рассматривать У. как меру поворота фиксированного луча вокруг его начала до заданного положения. В зависимости от направления поворота У. в этом случае можно рассматривать как положительные, так и отрицательные. Тем самым У. в этом смысле может иметь своей величиной любое . У. как поворота луча рассматривается в теории тригонометрич. функций: для любых значений аргумента (У.) можно определить значения тригонометрич. функций. Понятие У. в геометрич. системе, в основу к-рой положена точечно-векторная аксиоматика, в корне отличается от определений У. как фигуры - в этой аксиоматике под У. понимают определенную метрич. величину, связанную с двумя векторами с помощью операции скалярного умножения векторов. Именно, каждая пара векторов аи bопределяет нек-рый угол - число, связанное с векторами формулой

где (a, b ) - скалярное произведение векторов.
Понятие У. как плоской фигуры и как нек-рой числовой величины применяется в различных геометрич. задачах, в к-рых У. определяется специальным образом. Так, под У. между пересекающимися кривыми, имеющими определенные касательные в точке пересечения, понимают У., образованный этими касательными.
За угол между прямой и плоскостью принимается У., образованный прямой и ее прямоугольной проекцией на плоскость; он измеряется в пределах от 0

Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Синонимы :

Смотреть что такое "УГОЛ" в других словарях:

    уголёк - угол/ёк/ … Морфемно-орфографический словарь

    Муж. перелом, излом, колено, локоть, выступ или залом (впадина) об одной грани. Угол линейный, всякие две встречные черты и промежуток их; угол плоскостной или в плоскостях, встреча двух плоскостей или стен; угол толстый, теловой, встреча в одной … Толковый словарь Даля

    Угла, об угле, на (в) углу и (мат.) в угле, м. 1. Часть плоскости между двумя прямыми линиями, исходящими из одной точки (мат.). Вершина угла. Стороны угла. Измерение угла градусами. Прямой угол. (90°). Острый угол. (менее 90°). Тупой угол.… … Толковый словарь Ушакова

    УГОЛ - (1) атаки угол между направлением воздушного потока, набегающего на крыло самолёта, и хордой сечения крыла. От этого угла зависит значение подъёмной силы. Угол, при котором подъёмная сила максимальна, называется критическим углом атаки. У… … Большая политехническая энциклопедия

    - (плоский) геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки (вершины угла). Всякий угол с вершиной в центре некоторой окружности (центральный угол) определяет на окружности дугу АВ, ограниченную точками… … Большой Энциклопедический словарь

    Глава угла, из за угла, медвежий угол, непочатый угол, по всем углам.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. угол вершина, угловая точка; пеленг, пристанище, девятина, румб,… … Словарь синонимов

    угол - угол, род. угла; предл. об угле, в (на) углу и в речи математиков в угле; мн. углы, род. углов. В предложных и устойчивых сочетаниях: за угол и допустимо за угол (зайти, завернуть и т. п.), с угла на угол (двигаться, располагаться и т. п.), угол… … Словарь трудностей произношения и ударения в современном русском языке

    УГОЛ, угла, об угле, на (в) углу, муж. 1. (в угле.). В геометрии: плоская фигура, образованная двумя лучами (в 3 знач.), исходящими из одной точки. Вершина угла. Прямой у. (90°). Острый у. (меньше 90°). Тупой у. (более 90°). Внешние и внутренние… … Толковый словарь Ожегова

    угол - УГОЛ, угла, м. Четверть ставки, при объявлении которой загибается край карты. ◘ Туз и дама пик с углом // Убиты. А.И.Полежаев. День в Москве, 1832. ◘ После обеда рассыпает он червонцы на стол, тасует карты; понтёры трещат колодами,… … Карточная терминология и жаргон XIX века

На этом уроке мы дадим определение сонаправленных лучей и докажем теорему о равенстве углов с сонаправленными сторонами. Далее дадим определение угла между пересекающимися прямыми и скрещивающимися прямыми. Рассмотрим, каким может быть угол между двумя прямыми. В конце урока решим несколько задач на нахождение углов между скрещивающимися прямыми.

Тема: Параллельность прямых и плоскостей

Урок: Углы с сонаправленными сторонами. Угол между двумя прямыми

Любая прямая, например ОО 1 (Рис. 1.), рассекает плоскость на две полуплоскости. Если лучи ОА и О 1 А 1 параллельны и лежат в одной полуплоскости, то они называются сонаправленными .

Лучи О 2 А 2 и ОА не являются сонаправленными (Рис. 1.). Они параллельны, но не лежат в одной полуплоскости.

Если стороны двух углов сонаправленны, то такие углы равны.

Доказательство

Пусть нам даны параллельные лучи ОА и О 1 А 1 и параллельные лучи ОВ и О 1 В 1 (Рис. 2.). То есть, мы имеем два угла АОВ и А 1 О 1 В 1 , чьи стороны лежат на сонаправленных лучах. Докажем, что эти углы равны.

На стороне луча ОА и О 1 А 1 выберем точки А и А 1 так, чтобы отрезки ОА и О 1 А 1 были равны. Аналогично, точки В и В 1 выберем так, чтобы отрезки ОВ и О 1 В 1 были равны.

Рассмотрим четырехугольник А 1 О 1 ОА (Рис. 3.) ОА и О 1 А 1 А 1 О 1 ОА А 1 О 1 ОА ОО 1 и АА 1 параллельны и равны.

Рассмотрим четырехугольник В 1 О 1 ОВ . В этом четырехугольники стороны ОВ и О 1 В 1 параллельны и равны. По признаку параллелограмма, четырехугольник В 1 О 1 ОВ является параллелограммом. Так как В 1 О 1 ОВ - параллелограмм, то стороны ОО 1 и ВВ 1 параллельны и равны.

И прямая АА 1 параллельна прямой ОО 1 , и прямая ВВ 1 параллельна прямой ОО 1 , значит прямые АА 1 и ВВ 1 параллельны.

Рассмотрим четырехугольник В 1 А 1 АВ . В этом четырехугольники стороны АА 1 и ВВ 1 параллельны и равны. По признаку параллелограмма, четырехугольник В 1 А 1 АВ является параллелограммом. Так как В 1 А 1 АВ - параллелограмм, то стороны АВ и А 1 В 1 параллельны и равны.

Рассмотрим треугольники АОВ и А 1 О 1 В 1 . Стороны ОА и О 1 А 1 равны по построению. Стороны ОВ и О 1 В 1 также равны по построению. А как мы доказали, и стороны АВ и А 1 В 1 тоже равны. Значит, треугольники АОВ и А 1 О 1 В 1 равны по трем сторонам. В равных треугольниках против равных сторон лежат равные углы. Значит, углы АОВ и А 1 О 1 В 1 равны, что и требовалось доказать.

1) Пересекающиеся прямые.

Если прямые пересекающиеся, то мы имеем четыре разных угла. Углом между двумя прямыми , называется наименьший из углов между двумя прямыми. Угол между пересекающимися прямыми а и b обозначим α (Рис. 4.). Угол α такой, что .

Рис. 4. Угол между двумя пересекающимимся прямыми

2) Скрещивающиеся прямые

Пусть прямые а и b скрещивающиеся. Выберем произвольную точку О . Через точку О проведем прямую а 1 , параллельную прямой а , и прямую b 1 , параллельную прямой b (Рис. 5.). Прямые а 1 и b 1 пересекаются в точке О . Угол между двумя пересекающимися прямыми а 1 и b 1 , угол φ, и называется углом между скрещивающимися прямыми.

Рис. 5. Угол между двумя скрещивающимися прямыми

Зависит ли величина угла от выбранной точки О? Выберем точку О 1 . Через точку О 1 проведем прямую а 2 , параллельную прямой а , и прямую b 2 , параллельную прямой b (Рис. 6.). Угол между пересекающимися прямыми а 2 и b 2 обозначим φ 1 . Тогда углы φ и φ 1 - углы с сонаправленными сторонами. Как мы доказали, такие углы равны между собой. Значит, величина угла между скрещивающимися прямыми не зависит от выбора точки О .

Прямые ОВ и СD параллельны, ОА и СD скрещиваются. Найдите угол между прямыми ОА и СD , если:

1) ∠АОВ = 40°.

Выберем точку С . Через нее проходи прямая СD . Проведем СА 1 параллельно ОА (Рис. 7.). Тогда угол А 1 СD - угол между скрещивающимися прямыми ОА и СD . По теореме об углах с сонаправленными сторонами, угол А 1 СD равен углу АОВ , то есть 40°.

Рис. 7. Найти угол между двумя прямыми

2) ∠АОВ = 135°.

Сделаем то же самое построение (Рис. 8.). Тогда угол между скрещивающимися прямыми ОА и СD равен 45°, так как он наименьший из углов, которые получаются при пересечении прямых СD и СА 1 .

3) ∠АОВ = 90°.

Сделаем то же самое построение (Рис. 9.). Тогда все углы, которые получаются при пересечении прямых СD и СА 1 равны 90°. Искомый угол равен 90°.

1) Докажите, что середины сторон пространственного четырехугольника являются вершинами параллелограмма.

Доказательство

Пусть нам дан пространственный четырехугольник ABCD . M, N, K, L - середины ребер BD, AD, AC, BC соответственно (Рис. 10.). Нужно доказать, что MNKL - параллелограмм.

Рассмотрим треугольник АВD . МN МN параллельна АВ и равняется ее половине.

Рассмотрим треугольник АВС . - средняя линия. По свойству средней линии, параллельна АВ и равняется ее половине.

И МN , и параллельны АВ . Значит, МN параллельна по теореме о трех параллельных прямых.

Получаем, что в четырехугольнике MNKL - стороны МN и параллельны и равны, так как МN и равны половине АВ . Значит, по признаку параллелограмма, четырехугольник MNKL - параллелограмм, что и требовалось доказать.

2) Найдите угол между прямыми АВ и СD , если угол МNК = 135°.

Как мы уже доказали, МN параллельна прямой АВ . - средняя линия треугольника АСD , по свойству, параллельна . Значит, через точку N проходят две прямые МN и , которые параллельны скрещивающимся прямым АВ и соответственно. Значит, угол между прямыми МN и является углом между скрещивающимися прямыми АВ и . Нам дан тупой угол МNК = 135°. Угол между прямыми МN и - наименьший из углов, полученных при пересечении этих прямых, то есть 45°.

Итак, мы рассмотрели углы с сонаправленными сторонами и доказали их равенство. Рассмотрели углы между пересекающимися и скрещивающимися прямыми и решили несколько задач на нахождение угла между двумя прямыми. На следующем уроке мы продолжим решение задач и повторение теории.

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М. : Мнемозина, 2008. - 288 с. : ил.

2. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.

3. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М. : Дрофа, 008. - 233 с. :ил.

В) BC и D 1 В 1 .

Рис. 11. Найти угол между прямыми

4. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 13, 14, 15 стр. 54