Украшения. Аксессуары. Дизайн ногтей. Цвета. Нанесение. Ногти

Название простых чисел. Простые числа

В статье рассматриваются понятия простых и составных чисел. Даются определения таких чисел с примерами. Приводим доказательство того, что количество простых чисел неограниченно и произведем запись в таблицу простых чисел при помощи метода Эратосфена. Будут приведены доказательства того, является ли число простым или составным.

Yandex.RTB R-A-339285-1

Простые и составные числа – определения и примеры

Простые и составные числа относят к целым положительным. Они обязательно должны быть больше единицы. Делители также подразделяют на простые и составные. Чтобы понимать понятие составных чисел, необходимо предварительно изучить понятия делителей и кратных.

Определение 1

Простыми числами называют целые числа, которые больше единицы и имеют два положительных делителя, то есть себя и 1 .

Определение 2

Составными числами называют целые числа, которые больше единицы и имеют хотя бы три положительных делителя.

Единица не является ни простым ни составным числом. Она имеет только один положительный делитель, поэтому отличается от всех других положительных чисел. Все целые положительные числа называют натуральными, то есть используемые при счете.

Определение 3

Простые числа – это натуральные числа, имеющие только два положительных делителя.

Определение 4

Составное число – это натуральное число, имеющее более двух положительных делителей.

Любое число, которое больше 1 является либо простым, либо составным. Из свойства делимости имеем, что 1 и число а всегда будут делителями для любого числа а, то есть оно будет делиться само на себя и на 1 . Дадим определение целых чисел.

Определение 5

Натуральные числа, которые не являются простыми, называют составными.

Простые числа: 2 , 3 , 11 , 17 , 131 , 523 . Они делятся только сами на себя и на 1 . Составные числа: 6 , 63 , 121 , 6697 . То есть число 6 можно разложить на 2 и 3 , а 63 на 1 , 3 , 7 , 9 , 21 , 63 , а 121 на 11 , 11 , то есть его делители будут 1 , 11 , 121 . Число 6697 разложится на 37 и 181 . Заметим, что понятия простых чисел и взаимно простых чисел – разные понятия.

Для того, чтобы было проще использовать простые числа, необходимо использовать таблицу:

Таблица для всех существующих натуральных чисел нереальна, так как их существует бесконечное множество. Когда числа достигают размеров 10000 или 1000000000 , тогда следует задуматься об использовании решета Эратосфена.

Рассмотрим теорему, которая объясняет последнее утверждение.

Теорема 1

Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.

Доказательство 1

Возьмем, что а является натуральным числом, которое больше 1 , b является наименьшим отличным от единицы делителем для числа а. Следует доказать, что b является простым числом при помощи метода противного.

Допустим, что b – составное число. Отсюда имеем, что есть делитель для b , который отличен от 1 как и от b . Такой делитель обозначается как b 1 . Необходимо, чтобы условие 1 < b 1 < b было выполнено.

Из условия видно, что а делится на b , b делится на b 1 , значит, понятие делимости выражается таким образом: a = b · q и b = b 1 · q 1 , откуда a = b 1 · (q 1 · q) , где q и q 1 являются целыми числами. По правилу умножения целых чисел имеем, что произведение целых чисел – целое число с равенством вида a = b 1 · (q 1 · q) . Видно, что b 1 – это делитель для числа а. Неравенство 1 < b 1 < b не соответствует, потому как получим, что b является наименьшим положительным и отличным от 1 делителем а.

Теорема 2

Простых чисел бесконечно много.

Доказательство 2

Предположительно возьмем конечное количество натуральных чисел n и обозначим как p 1 , p 2 , … , p n . Рассмотрим вариант нахождения простого числа, отличного от указанных.

Примем на рассмотрение число р, которое равняется p 1 , p 2 , … , p n + 1 . Оно не равняется каждому из чисел, соответствующих простым числам вида p 1 , p 2 , … , p n . Число р является простым. Тогда считается, что теорема доказана. Если оно составное, тогда нужно принять обозначение p n + 1 и показать несовпадение делителя ни с одним из p 1 , p 2 , … , p n .

Если это было бы не так, тогда, исходя из свойства делимости произведения p 1 , p 2 , … , p n , получим, что оно делилось бы на p n + 1 . Заметим, что на выражение p n + 1 делится число р равняется сумме p 1 , p 2 , … , p n + 1 . Получим, что на выражение p n + 1 должно делиться второе слагаемое этой суммы, которое равняется 1 , но это невозможно.

Видно, что может быть найдено любое простое число среди любого количества заданных простых чисел. Отсюда следует, что простых чисел бесконечно много.

Так как простых чисел очень много, то таблицы ограничивают числами 100 , 1000 , 10000 и так далее.

При составлении таблицы простых чисел следует учитывать то, что для такой задачи необходима последовательная проверка чисел, начиная с 2 до 100 . При отсутствии делителя оно фиксируется в таблицу, если оно составное, то в таблицу не заносится.

Рассмотрим пошагово.

Если начать с числа 2 , то оно имеет только 2 делителя: 2 и 1, значит, его можно занести в таблицу. Также и с числом 3 . Число 4 является составным, следует разложить его еще на 2 и 2 . Число 5 является простым, значит, можно зафиксировать в таблице. Так выполнять вплоть до числа 100 .

Данный способ неудобный и долгий. Таблицу составить можно, но придется потратить большое количество времени. Необходимо использовать признаки делимости, которые ускорят процесс нахождения делителей.

Способ при помощи решета Эратосфена считают самым удобным. Рассмотрим на примере таблиц, приведенных ниже. Для начала записываются числа 2 , 3 , 4 , … , 50 .

Теперь необходимо зачеркнуть все числа, которые кратны 2 . Произвести последовательное зачеркивание. Получим таблицу вида:

Переходим к вычеркиванию чисел, кратных 5 . Получим:

Вычеркиваем числа, кратные 7 , 11 . В конечном итоге таблица получает вид

Перейдем к формулировке теоремы.

Теорема 3

Наименьший положительный и отличный от 1 делитель основного числа а не превосходит a , где a является арифметическим корнем заданного числа.

Доказательство 3

Необходимо обозначить b наименьший делитель составного числа а. Существует такое целое число q , где a = b · q , причем имеем, что b ≤ q . Недопустимо неравенство вида b > q , так как происходит нарушение условия. Обе части неравенства b ≤ q следует умножить на любое положительное число b , не равное 1 . Получаем, что b · b ≤ b · q , где b 2 ≤ a и b ≤ a .

Из доказанной теоремы видно, что вычеркивание чисел в таблице приводит к тому, что необходимо начинать с числа, которое равняется b 2 и удовлетворяет неравенству b 2 ≤ a . То есть, если вычеркнуть числа, кратные 2 , то процесс начинается с 4 , а кратных 3 – с 9 и так далее до 100 .

Составление такой таблицы при помощи теоремы Эратосфена говорит о том, что при вычеркивании всех составных чисел, останутся простые, которые не превосходят n . В примере, где n = 50 , у нас имеется, что n = 50 . Отсюда и получаем, что решето Эратосфена отсеивает все составные числа, которые по значению не больше значения корня из 50 . Поиск чисел производится при помощи вычеркивания.

Перед решением необходимо выяснять, является ли число простым или составным. Зачастую используются признаки делимости. Рассмотрим это на ниже приведенных примере.

Пример 1

Доказать что число 898989898989898989 является составным.

Решение

Сумма цифр заданного числа равняется 9 · 8 + 9 · 9 = 9 · 17 . Значит, число 9 · 17 делится на 9 , исходя из признака делимости на 9 . Отсюда следует, что оно составное.

Такие признаки не способны доказать простоту числа. Если нужна проверка, следует производить другие действия. Самый подходящий способ – это перебор чисел. В течение процесса можно найти простые и составные числа. То есть числа по значению не должны превосходить a . То есть число а необходимо разложить на простые множители. если это будет выполнено, тогда число а можно считать простым.

Пример 2

Определить составное или простое число 11723 .

Решение

Теперь необходимо найти все делители для числа 11723 . Необходимо оценить 11723 .

Отсюда видим, что 11723 < 200 , то 200 2 = 40 000 , а 11 723 < 40 000 . Получаем, что делители для 11 723 меньше числа 200 .

Для более точной оценки числа 11723 необходимо записать выражение 108 2 = 11 664 , а 109 2 = 11 881 , то 108 2 < 11 723 < 109 2 . Отсюда следует, что 11723 < 109 . Видно, что любое число, которое меньше 109 считается делителем для заданного числа.

При разложении получим, что 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 – это все простые числа. Весь данный процесс можно изобразить как деление столбиком. То есть разделить 11723 на 19 . Число 19 является одним из его множителей, так как получим деление без остатка. Изобразим деление столбиком:

Отсюда следует, что 11723 является составным числом, потому как кроме себя и 1 имеет делитель 19 .

Ответ: 11723 является составным числом.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Перебор делителей. По определению число n является простым лишь в том случае, если оно не делится без остатка на 2 и другие целые числа, кроме 1 и самого себя. Приведенная выше формула позволяет удалить ненужные шаги и сэкономить время: например, после проверки того, делится ли число на 3, нет необходимости проверять, делится ли оно на 9.

  • Функция floor(x) округляет число x до ближайшего целого числа, которое меньше или равно x.

Узнайте о модульной арифметике. Операция "x mod y" (mod является сокращением латинского слова "modulo", то есть “модуль”) означает "поделить x на y и найти остаток". Иными словами, в модульной арифметике по достижении определенной величины, которую называют модулем , числа вновь "превращаются" в ноль. Например, часы отсчитывают время с модулем 12: они показывают 10, 11 и 12 часов, а затем возвращаются к 1.

  • Во многих калькуляторах есть клавиша mod. В конце данного раздела показано, как вручную вычислять эту функцию для больших чисел.
  • Узнайте о подводных камнях малой теоремы Ферма. Все числа, для которых не выполняются условия теста, являются составными, однако остальные числа лишь вероятно относятся к простым. Если вы хотите избежать неверных результатов, поищите n в списке "чисел Кармайкла" (составных чисел, которые удовлетворяют данному тесту) и "псевдопростых чисел Ферма" (эти числа соответствуют условиям теста лишь при некоторых значениях a ).

    Если удобно, используйте тест Миллера-Рабина. Хотя данный метод довольно громоздок при вычислениях вручную, он часто используется в компьютерных программах. Он обеспечивает приемлемую скорость и дает меньше ошибок, чем метод Ферма. Составное число не будет принято за простое, если провести расчеты для более ¼ значений a . Если вы случайным способом выберете различные значения a и для всех них тест даст положительный результат, можно с достаточно высокой долей уверенности считать, что n является простым числом.

  • Для больших чисел используйте модульную арифметику. Если у вас под рукой нет калькулятора с функцией mod или калькулятор не рассчитан на операции с такими большими числами, используйте свойства степеней и модульную арифметику, чтобы облегчить вычисления. Ниже приведен пример для 3 50 {\displaystyle 3^{50}} mod 50:

    • Перепишите выражение в более удобном виде: mod 50. При расчетах вручную могут понадобиться дальнейшие упрощения.
    • (3 25 ∗ 3 25) {\displaystyle (3^{25}*3^{25})} mod 50 = mod 50 mod 50) mod 50. Здесь мы учли свойство модульного умножения.
    • 3 25 {\displaystyle 3^{25}} mod 50 = 43.
    • (3 25 {\displaystyle (3^{25}} mod 50 ∗ 3 25 {\displaystyle *3^{25}} mod 50) mod 50 = (43 ∗ 43) {\displaystyle (43*43)} mod 50.
    • = 1849 {\displaystyle =1849} mod 50.
    • = 49 {\displaystyle =49} .

  • В этой статье мы изучим простые и составные числа . Сначала дадим определения простых и составных чисел, а также приведем примеры. После этого докажем, что простых чисел бесконечно много. Далее запишем таблицу простых чисел, и рассмотрим методы составления таблицы простых чисел, особо тщательно остановимся на способе, получившем название решето Эратосфена. В заключение осветим основные моменты, которые нужно учитывать при доказательстве того, что данное число является простым или составным.

    Навигация по странице.

    Простые и составные числа – определения и примеры

    Понятия простые числа и составные числа относятся к , которые больше единицы. Такие целые числа, в зависимости от количества их положительных делителей, подразделяются на простые и составные числа. Таким образом, чтобы понять определения простых и составных чисел , нужно хорошо представлять себе, что такое делители и кратные .

    Определение.

    Простые числа – это целые числа, большие единицы, которые имеют только два положительных делителя, а именно самих себя и 1 .

    Определение.

    Составные числа – это целые числа, большие единицы, которое имеют, по крайней мере, три положительных делителя.

    Отдельно заметим, что число 1 не относится ни к простым, ни к составным числам. Единица имеет только один положительный делитель, которым является само число 1 . Этим число 1 отличается от всех остальных целых положительных чисел, которые имеют не менее двух положительных делителей.

    Учитывая, что целые положительные числа – это , и что единица имеет только один положительный делитель, можно привести другие формулировки озвученных определений простых и составных чисел.

    Определение.

    Простыми числами называют натуральные числа, которые имеют только два положительных делителя.

    Определение.

    Составными числами называют натуральные числа, имеющие более двух положительных делителей.

    Отметим, что каждое целое положительное число, большее единицы, есть либо простое, либо составное число. Иными словами, не существует ни одного такого целого числа, которое не являлось бы ни простым, ни составным. Это следует из свойства делимости , которое гласит, что числа 1 и a всегда являются делителями любого целого числа a .

    Исходя из информации предыдущего абзаца, можно дать следующее определение составных чисел.

    Определение.

    Натуральные числа, которые не являются простыми, называются составными .

    Приведем примеры простых и составных чисел .

    В качестве примеров составных чисел приведем 6 , 63 , 121 и 6 697 . Это утверждение тоже нуждается в пояснении. Число 6 имеет кроме положительных делителей 1 и 6 еще и делители 2 и 3 , так как 6=2·3 , поэтому 6 – действительно составное число. Положительными делителями 63 являются числа 1 , 3 , 7 , 9 , 21 и 63 . Число 121 равно произведению 11·11 , поэтому его положительными делителями являются 1 , 11 и 121 . А число 6 697 составное, так как его положительными делителями кроме 1 и 6 697 являются еще и числа 37 и 181 .

    В заключение этого пункта хочется еще обратить внимание на то, что простые числа и взаимно простые числа – это далеко ни одно и то же.

    Таблица простых чисел

    Простые числа, для удобства их дальнейшего использования, записывают в таблицу, которую называют таблицей простых чисел. Ниже представлена таблица простых чисел до 1 000 .

    Возникает логичный вопрос: «Почему мы заполнили таблицу простых чисел только до 1 000 , разве нельзя составить таблицу всех существующих простых чисел»?

    Ответим сначала на первую часть этого вопроса. Для большинства задач, при решении которых придется использовать простые числа, нам будет вполне достаточно простых чисел в пределах тысячи. В остальных случаях, скорее всего, придется прибегать к каким-либо специальным приемам решения. Хотя, несомненно, мы можем составить таблицу простых чисел до сколь угодно большого конечного целого положительного числа, будь то 10 000 или 1 000 000 000 , в следующем пункте мы поговорим о методах составления таблиц простых чисел, в частности, разберем способ, получивший название .

    Теперь разберемся с возможностью (а точнее с невозможностью) составления таблицы всех существующих простых чисел. Мы не можем составить таблицу всех простых чисел, потому что простых чисел бесконечно много. Последнее утверждение представляет собой теорему, которую мы докажем после следующей вспомогательной теоремы.

    Теорема.

    Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.

    Доказательство.

    Пусть a – натуральное число, большее единицы, и b – наименьший положительный и отличный от единицы делитель числа a . Докажем, что b – простое число методом от противного.

    Предположим, что b – составное число. Тогда существует делитель числа b (обозначим его b 1 ), который отличен как от 1 , так и от b . Если также учесть, что абсолютная величина делителя не превосходит абсолютной величины делимого (это мы знаем из свойств делимости), то должно выполняться условие 1

    Так как число a делится на b по условию, и мы сказали, что b делится на b 1 , то понятие делимости позволяет говорить о существовании таких целых чисел q и q 1 , что a=b·q и b=b 1 ·q 1 , откуда a= b 1 ·(q 1 ·q) . Из следует, что произведение двух целых чисел есть целое число, тогда равенство a=b 1 ·(q 1 ·q) указывает на то, что b 1 является делителем числа a . Учитывая полученные выше неравенства 1

    Теперь мы можем доказать, что простых чисел бесконечно много.

    Теорема.

    Простых чисел бесконечно много.

    Доказательство.

    Предположим, что это не так. То есть, предположим, что простых чисел всего n штук, и эти простые числа есть p 1 , p 2 , …, p n . Покажем, что мы всегда можем найти простое число, отличное от указанных.

    Рассмотрим число, p равное p 1 ·p 2 ·…·p n +1 . Понятно, что это число отлично от каждого из простых чисел p 1 , p 2 , …, p n . Если число p - простое, то теорема доказана. Если же это число составное, то в силу предыдущей теоремы существует простой делитель этого числа (обозначим его p n+1 ). Покажем, что этот делитель не совпадает ни с одним из чисел p 1 , p 2 , …, p n .

    Если бы это было не так, то по свойствам делимости произведение p 1 ·p 2 ·…·p n делилось бы на p n+1 . Но на p n+1 делится и число p , равное сумме p 1 ·p 2 ·…·p n +1 . Отсюда следует, что на p n+1 должно делиться второе слагаемое этой суммы, которое равно единице, а это невозможно.

    Так доказано, что всегда может быть найдено новое простое число, не заключающееся среди любого количества наперед заданных простых чисел. Следовательно, простых чисел бесконечно много.

    Итак, в силу того, что простых чисел бесконечно много, при составлении таблиц простых чисел всегда ограничивают себя сверху каким-либо числом, обычно, 100 , 1 000 , 10 000 и т.д.

    Решето Эратосфена

    Сейчас мы обсудим способы составления таблиц простых чисел. Предположим, что нам нужно составить таблицу простых чисел до 100 .

    Самым очевидным методом решения этой задачи является последовательная проверка целых положительных чисел, начиная с 2 , и заканчивая 100 , на наличие положительного делителя, который больше 1 и меньше проверяемого числа (из свойств делимости мы знаем, что абсолютная величина делителя не превосходит абсолютной величины делимого, отличного от нуля). Если такой делитель не найден, то проверяемое число является простым, и оно заносится в таблицу простых чисел. Если же такой делитель найден, то проверяемое число является составным, оно НЕ заносится в таблицу простых чисел. После этого происходит переход к следующему числу, которое аналогично проверяется на наличие делителя.

    Опишем несколько первых шагов.

    Начинаем с числа 2 . Число 2 не имеет положительных делителей, кроме 1 и 2 . Следовательно, оно простое, поэтому, заносим его в таблицу простых чисел. Здесь следует сказать, что 2 является наименьшим простым числом. Переходим к числу 3 . Его возможным положительным делителем, отличным от 1 и 3 , является число 2 . Но 3 на 2 не делится, поэтому, 3 – простое число, и его также нужно занести в таблицу простых чисел. Переходим к числу 4 . Его положительными делителями, отличными от 1 и 4 , могут быть числа 2 и 3 , проверим их. Число 4 делится на 2 , поэтому, 4 – составное число, и его не нужно заносить в таблицу простых чисел. Обратим внимание на то, что 4 – наименьшее составное число. Переходим к числу 5 . Проверяем, являются ли его делителем хотя бы одно из чисел 2 , 3 , 4 . Так как 5 не делится ни на 2 , ни на 3 , ни на 4 , то оно простое, и его надо записать в таблицу простых чисел. Дальше происходит переход к числам 6 , 7 , и так далее до 100 .

    Такой подход к составлению таблицы простых чисел является далеко не идеальным. Так или иначе, он имеет право на существование. Отметим, что при этом способе построения таблицы целых чисел можно использовать признаки делимости , которые немного ускорят процесс поиска делителей.

    Существует более удобный способ для составления таблицы простых чисел, называемый . Присутствующее в названии слово «решето» не случайно, так как действия этого метода помогают как бы «просеять» сквозь решето Эратосфена целые числа, большие единицы, чтобы отделить простые от составных.

    Покажем решето Эратосфена в действии при составлении таблицы простых чисел до 50 .

    Сначала записываем по порядку числа 2, 3, 4, …, 50 .


    Первое записанное число 2 является простым. Теперь от числа 2 последовательно перемещаемся вправо на два числа и зачеркиваем эти числа, пока не доберемся до конца составляемой таблицы чисел. Так будут вычеркнуты все числа, кратные двум.

    Первым следующим за 2 невычеркнутым числом является 3 . Это число простое. Теперь от числа 3 последовательно перемещаемся вправо на три числа (учитывая и уже зачеркнутые числа) и вычеркиваем их. Так будут вычеркнуты все числа, кратные трем.

    Первым следующим за 3 невычеркнутым числом является 5 . Это число простое. Теперь от числа 5 последовательно перемещаемся вправо на 5 чисел (учитываем и зачеркнутые ранее числа) и вычеркиваем их. Так будут вычеркнуты все числа, кратные пяти.

    Дальше вычеркиваем числа, кратные 7 , затем, кратные 11 и так далее. Процесс заканчивается, когда не останется чисел для вычеркивания. Ниже показана законченная таблица простых чисел до 50 , полученная с помощью решета Эратосфена. Все незачеркнутые числа являются простыми, а все зачеркнутые числа – составными.

    Давайте еще сформулируем и докажем теорему, которая позволит ускорить процесс составления таблицы простых чисел при помощи решета Эратосфена.

    Теорема.

    Наименьший положительный и отличный от единицы делитель составного числа a не превосходит , где - из a .

    Доказательство.

    Обозначим буквой b наименьший и отличный от единицы делитель составного числа a (число b является простым, что следует из теоремы, доказанной в самом начале предыдущего пункта). Тогда существует такое целое число q , что a=b·q (здесь q – положительное целое число, что следует из правил умножения целых чисел), причем (при b>q нарушится условие, что b – наименьший делитель числа a , так как q также является делителем числа a в силу равенства a=q·b ). Умножив обе части неравенства на положительное и большее единицы целое число b (это нам позволяют сделать ), получаем , откуда и .

    Что же нам дает доказанная теорема, касательно решета Эратосфена?

    Во-первых, вычеркивание составных чисел, кратных простому числу b следует начинать с числа, равного (это следует из неравенства ). Например, вычеркивание чисел, кратных двум, следует начинать с числа 4 , кратных трем – с числа 9 , кратных пяти – с числа 25 , и так далее.

    Во-вторых, составление таблицы простых чисел до числа n с помощью решета Эратосфена можно считать законченным тогда, когда будут вычеркнуты все составные числа, кратные простым числам, не превосходящим . В нашем примере n=50 (так как мы составляем таблицу простых чисел до 50 ) и , поэтому решето Эратосфена должно отсеять все составные числа, кратные простым числам 2 , 3 , 5 и 7 , которые не превосходят арифметического квадратного корня из 50 . То есть, нам дальше не нужно заниматься поиском и вычеркиванием чисел, кратных простым числам 11 , 13 , 17 , 19 , 23 и так далее до 47 , так как они уже будут вычеркнуты, как кратные меньшим простым числам 2 , 3 , 5 и 7 .

    Данное число простое или составное?

    Некоторые задания требуют выяснения, является ли данное число простым или составным. В общем случае эта задача далеко не проста, особенно для чисел, запись которых состоит из значительного количества знаков. В большинстве случаев приходится искать какой-либо специфический способ ее решения. Однако мы попробуем дать направление ходу мыслей для несложных случаев.

    Несомненно, можно попробовать воспользоваться признаками делимости для доказательства того, что данное число является составным. Если, к примеру, некоторый признак делимости показывает, что данное число делится на некоторое целое положительное число большее единицы, то исходное число является составным.

    Пример.

    Докажите, что число 898 989 898 989 898 989 составное.

    Решение.

    Сумма цифр данного числа равна 9·8+9·9=9·17 . Так как число, равное 9·17 делится на 9 , то по признаку делимости на 9 можно утверждать, что исходное число также делится на 9 . Следовательно, оно составное.

    Существенный недостаток такого подхода заключается в том, что признаки делимости не позволяют доказать простоту числа. Поэтому при проверке числа на то, является ли оно простым или составным, нужно действовать иначе.

    Самый логичный подход состоит в переборе всех возможных делителей данного числа. Если ни один из возможных делителей не будет истинным делителем данного числа, то это число будет простым, в противном случае – составным. Из теорем, доказанных в предыдущем пункте, следует, что делители данного числа a нужно искать среди простых чисел, не превосходящих . Таким образом, данное число a можно последовательно делить на простые числа (которые удобно брать из таблицы простых чисел), пытаясь найти делитель числа a . Если будет найден делитель, то число a – составное. Если же среди простых чисел, не превосходящих , не окажется делителя числа a , то число a – простое.

    Пример.

    Число 11 723 простое или составное?

    Решение.

    Выясним, до какого простого числа могут быть делители числа 11 723 . Для этого оценим .

    Достаточно очевидно, что , так как 200 2 =40 000 , а 11 723<40 000 (при необходимости смотрите статью сравнение чисел ). Таким образом, возможные простые делители числа 11 723 меньше числа 200 . Это уже значительно облегчает нашу задачу. Если бы мы этого не знали, то нам бы пришлось перебирать все простые числа не до 200 , а вплоть до числа 11 723 .

    При желании можно оценить более точно. Так как 108 2 =11 664 , а 109 2 =11 881 , то 108 2 <11 723<109 2 , следовательно, . Таким образом, любое из простых чисел, меньших 109 , потенциально является простым делителем данного числа 11 723 .

    Теперь мы будем последовательно делить число 11 723 на простые числа 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 . Если число 11 723 разделится нацело на одно из записанных простых чисел, то оно будет составным. Если же оно не делится ни на одно из записанных простых чисел, то исходное число простое.

    Не будем описывать весь этот монотонный и однообразный процесс деления. Сразу скажем, что 11 723

    Определение 1. Простое число − это натуральное число больше единицы, которое делится только на себя и на 1.

    Другими словами число является простым, если имеет только два различных натуральных делителя.

    Определение 2. Любое натуральное число, которое кроме самого себя и единицы имеет и других делителей, называется составным числом.

    Другими словами натуральные числа, не являющиеся простыми числами, называются составными. Из определения 1 следует, что составное число имеет больше двух натуральных делителей. Число 1 не является ни простым, ни составным т.к. имеет только один делитель 1 и, кроме этого многие теоремы относительно простых чисел не имеют места для единицы.

    Из определений 1 и 2 следует, что каждое целое положительное число больше 1 является либо простым, либо составным числом.

    Ниже представлена программа для отображения простых чисел до 5000. Заполните ячейки, нажмите на кнопку "Создать" и подождите несколько секунд.

    Таблица простых чисел

    Утверждение 1. Если p - простое число и a любое целое число, то либо a делится на p , либо p и a взаимно простые числа.

    Действительно. Если p простое число, то оно делится только на себя и на 1, если a не делится на p , то наибольший общий делитель a и p равен 1. Тогда p и a взаимно простые числа.

    Утверждение 2. Если произведение нескольких чисел чисел a 1 , a 2 , a 3 , ... делится на простое число p , то по крайней мере одно из чисел a 1 , a 2 , a 3 , ... делится на p .

    Действительно. Если бы ни одно из чисел не делилось на p , то числа a 1 , a 2 , a 3 , ... были бы взаимно простые числа по отношению p . Но из следствия 3 () следует, что их произведение a 1 , a 2 , a 3 , ... также взаимно простое по отношению к p , что противоречит условию утверждения. Следовательно по крайней мере один из чисел делится на p .

    Теорема 1. Любое составное число всегда может быть представлено и притом единственным способом в виде произведения конечного числа простых чисел.

    Доказательство. Пусть k составное число, и пусть a 1 один из его делителей отличное от 1 и самого себя. Если a 1 составное, то имеет кроме 1 и a 1 и другой делитель a 2 . Если a 2 число составное, то имеет кроме 1 и a 2 и другой делитель a 3 . Рассуждая таким образом и учитывая, что числа a 1 , a 2 , a 3 , ... убывают и этот ряд содержит конечное число членов, мы дойдем какого-то простого числа p 1 . Тогда k можно представить в виде

    Допустим существует два разложения числа k :

    Так как k=p 1 p 2 p 3 ... делится на простое число q 1 , то по крайней мере один из множителей, например p 1 делится на q 1 . Но p 1 простое число и делится только на 1 и на себя. Следовательно p 1 =q 1 (т.к. q 1 ≠1)

    Тогда из (2) можно исключить p 1 и q 1:

    Таким образом убеждаемся, что всякое простое число входящее множителем в первое разложение один или несколько раз, входит и во второе разложение минимум столько же раз и наоборот, всякое простое число, которое входит множителем во второе разложение один или несколько раз входит и в первое разложение минимум столько же раз. Следовательно любое простое число входит множителем в оба разложения одинаковое число раз и, таким образом, эти два разложения одинаковы.■

    Разложение составного числа k можно записать в следующем виде

    (3)

    где p 1 , p 2 , ... различные простые числа, α, β, γ ... целые положительные числа.

    Разложение (3) называется каноническим разложением числа.

    Простые числа в ряду натуральных чисел встречаются неравномерно. В одних частях ряда их больше, в других - меньше. Чем дальше мы продвигаемся по числовому ряду, тем реже встречаются простые числа. Возникает вопрос, существует ли самое большое простое число? Древнегреческий математик Евклид доказал, что простых чисел бесконечно много. Ниже мы представим это доказательство.

    Теорема 2. Количество простых чисел бесконечно много.

    Доказательство. Предположим, что существует конечное число простых чисел, и пусть наибольшее простое число равно p . Рассмотрим все числа больше p . По предположению утверждения эти числа должны быть составными и должны делится по крайней мере на один из простых чисел. Выберем число, являющиеся произведением всех этих простых чисел плюс 1:

    Число z больше p так как 2p уже больше p . p не делится ни на одно из этих простых чисел, т.к. при делении на каждое из них дает остаток 1. Таким образом мы приходим к противоречию. Следовательно существует бесчисленное множество простых чисел.

    Данная теорема является частным случаем более общей теоремы:

    Теорема 3. Пусть задана арифметическая прогрессия

    Тогда любое простое число, входящее в n , должно входить и в m , поэтому в n не могут входить другие простые множители, которые не входят в m и притом эти простые множители в n входят не более число раз, чем в m .

    Справедливо и обратное. Если каждый простой множитель числа n входит по крайней мере столько же раз в число m , то m делится на n .

    Утверждение 3. Пусть a 1 ,a 2 ,a 3 ,... различные простые числа входящие в m так, что

    где i =0,1,...α , j =0,1,...,β , k=0,1,...,γ . Заметим, что α i принимает α +1 значений, β j принимает β +1 значений, γ k принимает γ +1 значений, ... .

    • Перевод

    Свойства простых чисел впервые начали изучать математики Древней Греции. Математики пифагорейской школы (500 - 300 до н.э.) в первую очередь интересовались мистическими и нумерологическими свойствами простых чисел. Они первыми пришли к идеям о совершенных и дружественных числах.

    У совершенного числа сумма его собственных делителей равна ему самому. Например, собственные делители числа 6: 1, 2 и 3. 1 + 2 + 3 = 6. У числа 28 делители - это 1, 2, 4, 7 и 14. При этом, 1 + 2 + 4 + 7 + 14 = 28.

    Числа называются дружественными, если сумма собственных делителей одного числа равна другому, и наоборот – например, 220 и 284. Можно сказать, что совершенное число является дружественным для самого себя.

    Ко времени появления работы Евклида «Начала» в 300 году до н.э. уже было доказано несколько важных фактов касательно простых чисел. В книге IX «Начал» Эвклид доказал, что простых чисел бесконечное количество. Это, кстати, один из первых примеров использования доказательства от противного. Также он доказывает Основную теорему арифметики – каждое целое число можно представить единственным образом в виде произведения простых чисел.

    Также он показал, что если число 2 n -1 является простым, то число 2 n-1 * (2 n -1) будет совершенным. Другой математик, Эйлер, в 1747 году сумел показать, что все чётные совершенные числа можно записать в таком виде. По сей день неизвестно, существуют ли нечётные совершенные числа.

    В году 200 году до н.э. грек Эратосфен придумал алгоритм для поиска простых чисел под названием «Решето Эратосфена».

    А затем случился большой перерыв в истории исследования простых чисел, связанный со Средними веками.

    Следующие открытия были сделаны уже в начале 17-го века математиком Ферма. Он доказал гипотезу Альбера Жирара, что любое простое число вида 4n+1 можно записать уникальным образом в виде суммы двух квадратов, и также сформулировал теорему о том, что любое число можно представить в виде суммы четырёх квадратов.

    Он разработал новый метод факторизации больших чисел, и продемонстрировал его на числе 2027651281 = 44021 × 46061. Также он доказал Малую теорему Ферма: если p – простое число, то для любого целого a будет верно a p = a modulo p.

    Это утверждение доказывает половину того, что было известно как «китайская гипотеза», и датируется 2000 годами ранее: целое n является простым тогда и только тогда, если 2 n -2 делится на n. Вторая часть гипотезы оказалась ложной – к примеру, 2 341 - 2 делится на 341, хотя число 341 составное: 341 = 31 × 11.

    Малая теорема Ферма послужила основой множества других результатов в теории чисел и методов проверки чисел на принадлежность к простым – многие из которых используются и по сей день.

    Ферма много переписывался со своими современниками, в особенности с монахом по имени Марен Мерсенн. В одном из писем он высказал гипотезу о том, что числа вида 2 n +1 всегда будут простыми, если n является степенью двойки. Он проверил это для n = 1, 2, 4, 8 и 16, и был уверен, что в случае, когда n не является степенью двойки, число не обязательно получалось простым. Эти числа называются числами Ферма, и лишь через 100 лет Эйлер показал, что следующее число, 2 32 + 1 = 4294967297 делится на 641, и следовательно, не является простым.

    Числа вида 2 n - 1 также служили предметом исследований, поскольку легко показать, что если n – составное, то и само число тоже составное. Эти числа называют числами Мерсенна, поскольку он активно их изучал.

    Но не все числа вида 2 n - 1, где n – простое, являются простыми. К примеру, 2 11 - 1 = 2047 = 23 * 89. Впервые это обнаружили в 1536 году.

    Многие годы числа такого вида давали математикам наибольшие известные простые числа. Что число M 19 , было доказано Катальди в 1588 году, и в течение 200 лет было наибольшим известным простым числом, пока Эйлер не доказал, что M 31 также простое. Этот рекорд продержался ещё сто лет, а затем Люкас показал, что M 127 - простое (а это уже число из 39 цифр), и после него исследования продолжились уже с появлением компьютеров.

    В 1952 была доказана простота чисел M 521 , M 607 , M 1279 , M 2203 и M 2281 .

    К 2005 году найдено 42 простых чисел Мерсенна. Наибольшее из них, M 25964951 , состоит из 7816230 цифр.

    Работа Эйлера оказала огромное влияние на теорию чисел, в том числе и простых. Он расширил Малую теорему Ферма и ввёл φ-функцию. Факторизовал 5-е число Ферма 2 32 +1, нашёл 60 пар дружественных чисел, и сформулировал (но не смог доказать) квадратичный закон взаимности.

    Он первым ввёл методы математического анализа и разработал аналитическую теорию чисел. Он доказал, что не только гармонический ряд ∑ (1/n), но и ряд вида

    1/2 + 1/3 + 1/5 + 1/7 + 1/11 +…

    Получаемый суммой величин, обратных к простым числам, также расходится. Сумма n членов гармонического ряда растёт примерно как log(n), а второй ряд расходится медленнее, как log[ log(n) ]. Это значит, что, например, сумма обратных величин ко всем найденным на сегодняшний день простым числам даст всего 4, хотя ряд всё равно расходится.

    На первый взгляд кажется, что простые числа распределены среди целых довольно случайно. К примеру, среди 100 чисел, идущих прямо перед 10000000, встречается 9 простых, а среди 100 чисел, идущих сразу после этого значения – всего 2. Но на больших отрезках простые числа распределены достаточно равномерно. Лежандр и Гаусс занимались вопросами их распределения. Гаусс как-то рассказывал другу, что в любые свободные 15 минут он всегда подсчитывает количество простых в очередной 1000 чисел. К концу жизни он сосчитал все простые числа в промежутке до 3 миллионов. Лежандр и Гаусс одинаково вычислили, что для больших n плотность простых чисел составляет 1/log(n). Лежандр оценил количество простых чисел в промежутке от 1 до n, как

    π(n) = n/(log(n) - 1.08366)

    А Гаусс – как логарифмический интеграл

    π(n) = ∫ 1/log(t) dt

    С промежутком интегрирования от 2 до n.

    Утверждение о плотности простых чисел 1/log(n) известно как Теорема о распределении простых чисел. Её пытались доказать в течение всего 19 века, а прогресса достигли Чебышёв и Риман. Они связали её с гипотезой Римана – по сию пору не доказанной гипотезой о распределении нулей дзета-функции Римана. Плотность простых чисел была одновременно доказана Адамаром и Валле-Пуссеном в 1896 году.

    В теории простых чисел есть ещё множество нерешённых вопросов, некоторым из которых уже многие сотни лет:

    • гипотеза о простых числах-близнецах – о бесконечном количестве пар простых чисел, отличающихся друг от друга на 2
    • гипотеза Гольдбаха: любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел
    • бесконечно ли количество простых чисел вида n 2 + 1 ?
    • всегда ли можно найти простое число между n 2 and (n + 1) 2 ? (факт, что между n и 2n всегда есть простое число, было доказан Чебышёвым)
    • бесконечно ли число простых чисел Ферма? есть ли вообще простые числа Ферма после 4-го?
    • существует ли арифметическая прогрессия из последовательных простых чисел для любой заданной длины? например, для длины 4: 251, 257, 263, 269. Максимальная из найденных длина равна 26 .
    • бесконечно ли число наборов из трёх последовательных простых чисел в арифметической прогрессии?
    • n 2 - n + 41 – простое число для 0 ≤ n ≤ 40. Бесконечно ли количество таких простых чисел? Тот же вопрос для формулы n 2 - 79 n + 1601. Эти числа простые для 0 ≤ n ≤ 79.
    • бесконечно ли количество простых чисел вида n# + 1? (n# - результат перемножения всех простых чисел, меньших n)
    • бесконечно ли количество простых чисел вида n# -1 ?
    • бесконечно ли количество простых чисел вида n! + 1?
    • бесконечно ли количество простых чисел вида n! – 1?
    • если p – простое, всегда ли 2 p -1 не содержит среди множителей квадратов простых чисел
    • содержит ли последовательность Фибоначчи бесконечное количество простых чисел?

    Самые большие близнецы среди простых чисел – это 2003663613 × 2 195000 ± 1. Они состоят из 58711 цифр, и были найдены в 2007 году.

    Самое большое факториальное простое число (вида n! ± 1) – это 147855! - 1. Оно состоит из 142891 цифр и было найдено в 2002.

    Наибольшее праймориальное простое число (число вида n# ± 1) – это 1098133# + 1.

    Теги: Добавить метки