Украшения. Аксессуары. Дизайн ногтей. Цвета. Нанесение. Ногти

Электронная схема датчика влажности для ванной. Датчик предотвращения протечки воды своими руками

Вот захотел я автоматизировать процесс просушки ванной комнаты после купания. У меня было много обзоров, посвящённых теме влажности. Решил внедрить в жизнь (так сказать) один из методов борьбы с ней. Кстати, зимой в ванной и бельё сушим. Достаточно вытяжной вентилятор включить. Но следить за вентилятором не всегда сподручно. Вот и решил поставить автоматику на это дело. Кому интересно, заходим.
Когда въехал в новую квартиру, почти сразу поставил в вытяжку вентилятор с обратным клапаном. Вентилятор необходим, чтобы просушивать ванную комнату после купания. Обратный клапан нужен для предотвращения попадания в квартиру посторонних запахов от соседей (когда вентилятор молчит). И такое бывает. Вентилятор не простой, с таймером и регулировкой временнОго интервала.
Вот в это изделие китайпрома и хотел вживить купленный модуль.


Так как живу в многоквартирном «муравейнике», то единственное место для сушки белья – это балкон. В ванной может и затухнуть. Необходима циркуляция воздуха. Вентилятор должен был решить эту проблему. Поначалу именно так и делали. Главное не забыть его выключить. Во время работы вентилятора необходимо приоткрывать малость окошко. Про школьную задачку с бассейном и двумя трубами напоминать не надо? Чтобы воздух выходил в вытяжку, необходимо, чтобы он откуда-то входил в квартиру. У кого окна деревянные, а не пластиковые, проблем не будет. Щелей хватит. А вот с пластиковыми квартира превращается в террариум.
Тут я и задумался об автоматизации процесса. Именно для этого я и заказал модуль. Его задачей должно было стать отключение/включение вентилятора при определённых уровнях влажности.
Пора смотреть, в каком виде прибыло. Посылка шла около трёх недель. Модуль был упакован хорошо. В такой пакет их штук двадцать вошло бы.


Сам девайс был запаян в антистатический пакет. Всё по уму. Пайка аккуратная. Претензий по внешнему виду не имею. Даже плата промыта.

Никакой инструкции не было. Только то, что вы видите.
Вот, что написано на странице магазина:

Specification:
Weight: 18g
Size: 5 x 2.5 x 1.7 cm (L x W x H)
Current will be more than 150mA
Supply voltage: 5V DC
Maximum load: 10A 250VAC / 10A 125VAC / 10A 30VDC / 10A 28VDC
Напряжение питания: 5В
Максимальная нагрузка: 10А 250В переменного и 10А 30В постоянного тока.
Осталось проверить, как работает. Для этого взял старую (уже ненужную) зарядку от телефона.


Эта зарядка без USB разъёма. Ну очень старенькая. Поэтому на выходе 7В (а не 5В). Пришлось припаять МС стабилизатора КРЕН5. В этом ничего сложного нет. Кто дружит с паяльником, тот знает.


Сильно не пугайтесь, сделал времянку.
Подключил согласно схеме. Схему более менее чего-то подходящего нашёл на Али. Далее редактировал сам согласно тому, что пришло.


Красный светодиод индицирует наличие питающего напряжения. Зелёный – сработку реле. Синим выделил датчик влажности. В основе схемы лежит компаратор на LM393. Подстроечный резистор предназначен для настройки порога срабатывания реле влажности. Всё просто и понятно. Вот только одно НО. Схема НЕ работает.
Пришлось разбираться. Для этого залез в термогигрометр. Обзор (и не один) про него был.


Вскрытие сложностей не доставило. Делал это не один раз.


В данном случае меня интересует только датчик влажности. А с ним не всё так просто. Тестером не звонится. Пришлось искать Datasheet.


А не звонится он потому, что меняет своё частотное сопротивление (рабочая частота 1 кГц). Постоянным током не звонится. Здесь привычный мультиметр не поможет.
Любопытство заставило меня подключить осциллограф параллельно датчику гигрометра.
Вот небольшое видео того, что я увидел.

Девайс обновляет свои показания каждые 10 секунд. Поэтому каждые 10 секунд на датчике появляется колебания, которые фиксирует осциллограф. И никак иначе! Датчик меняет своё сопротивление только по отношению к частоте.
Клякса-мозг отлавливает эти изменения и выдаёт результат на дисплей.
В интернете тоже пришлось полазить.
Таблица зависимости сопротивления датчика от влажности и температуры (на частоте 1кГц):


Датчик ну очень корявый. Меняет своё сопротивление не только от влажности, но и от температуры. Причём зависимость настолько нелинейная, что анализу не поддаётся.
Теперь можно сделать однозначный вывод: Обозреваемый модуль (реле влажности) работать не может в ПРИНЦИПЕ! Компаратор – это не то устройство, что сможет подавать частоту на датчик влажности, а затем анализировать полученные данные. Максимум, что сможет он сделать, это сравнить уровни напряжения на своих входах.
Но нет, уже не доверяя своим выводам, пошёл в ближайший магазинчик радиодеталей и купил МС LM393, правда в другом корпусе. В каком была, в таком и купил, 30 или 40 рублей, не помню. Собрал макетку на скорую руку.

Подключил. НЕ РАБОТАЕТ. Всё! Надо бросать.
Но НЕТ. Надежда умирает последней.
Решил купить на Али аналогичный, но упрощённый модуль (без реле) за $1.29. На тот момент было около 70 рублей.


Подумал, что даже в случае неудачи, останется датчик влажности и готовая схема на компараторе для самоделок за сущие копейки. На этот раз никакого антистатического пакета.


Обычный пакетик с замком.


Модуль другой, но схемотехника та же.

Эту схему я скопировал у китайских товарищей. Всё тоже самое, только нет реле.
Подключил. НЕ РАБОТАЕТ. Всё!
Умерла последняя надежда:(На этом я закончил свои «злоключения».
Китайцы привычно жгут со схемами.
Все модули, что получил, не останутся без дела. Я найду им применение. Можно сделать термореле, можно фотореле. Схема уже готова. Необходимо только установить терморезистор или датчик света (фоторезистор). Но это будет уже другая история.
И этот девайс тоже имеет право на жизнь. Вот только не в таком обличии. Реле влажности в том виде, что получил я – это БЛЕФ. Возможно, они существуют на китайском рынке, но не с такой схемотехникой.
На этом всё.
Как правильно распорядиться сведениями из моего обзора каждый решает сам. Кому что-то неясно, задавайте вопросы. Надеюсь, хоть кому-то помог. Возможно, кто-то захочет помочь мне. Я буду очень благодарен.
Удачи всем!
Чуть не забыл напомнить. Датчик влажности (змейка) покрыт специальным активным слоем, который и позволяет ему менять своё сопротивление. Активный слой трогать руками нельзя! Необходимо также быть внимательным к парам флюса или канифоли.

Планирую купить +52 Добавить в избранное Обзор понравился +50 +102

Вода - это жизнь. Если она в кране, или в радиаторе отопления, это благо. А если она на полу вашей квартиры, или на потолке соседа снизу - это большие финансовые и моральные неприятности. Разумеется, необходимо регулярно проверять систему водоснабжения и отопления на предмет коррозии или трещин в пластиковых трубах. Однако прорыв воды обычно происходит внезапно, без признаков надвигающейся опасности. Хорошо, если в этот момент вы дома, и не спите. Но, по закону подлости, протечки возникают как раз в ночное время, или когда вас нет дома.

Простые правила борьбы с этой проблемой (особенно это касается старого жилого фонда, с изношенными сетями):

  • Регулярно осматривайте водопроводные трубы и элементы системы отопления на предмет дефектов, появления точечной ржавчины, герметичности соединений, и прочее.
  • Уходя из дому, перекрывайте входную задвижку на стояке.
  • Вне отопительного сезона закрывайте краны на батареях (если они имеются).
  • Используйте систему защиты от протечек.

Последний пункт списка мы рассмотрим подробнее.

Как сигнализировать об утечке воды

Решение вопроса пришло в быт из яхтенного мира. Поскольку судовые помещения нижнего яруса (особенно это касается трюмов) находятся ниже ватерлинии, в них регулярно скапливается вода. Последствия понятны, вопрос в том, как с этим бороться. Ставить для контроля отдельного вахтенного матроса нерационально. Тогда кто даст команду на включение откачной помпы?

Существуют эффективные тандемы: датчик наличия воды, и автоматическая помпа. Как только датчик обнаружит заполнение трюма, включается мотор помпы, и производится откачка.

Датчик воды - не что иное, как обычный поплавок на шарнире, соединенный с выключателем помпы. Когда уровень воды поднимается на 1–2 см, одновременно срабатывает сигнализация и мотор откачной помпы.

Удобно? Да. Безопасно? Разумеется. Однако такая система вряд ли подойдет для жилого дома.

  • Во-первых, если вода достигнет уровня 1–2 см по всей площади помещения, она через порог входной двери побежит на лестничную площадку (не говоря о соседях снизу).
  • Во-вторых, откачная помпа совершенно не нужна, поскольку необходимо немедленно найти и локализовать причину прорыва.
  • В-третьих, поплавковая система для помещений с плоским полом неэффективна (в отличие от плавсредств с килеватой формой днища). Пока наберется «нужный» для срабатывания уровень, от сырости развалится дом.

Стало быть, нужна более чувствительная система сигнализации от протечек. Это вопрос датчиков, а исполнительная часть бывает двух видов:

1. Только сигнализация. Она может быть световой, звуковой, или даже соединенной с GSM сетью. В этом случае вы получите сигнал на мобильный телефон, и сможете дистанционно вызвать аварийную бригаду.

2. Отключение подачи воды (к сожалению, такая конструкция не работает с системой отопления, только водопровод). После главной задвижки, которая подает воду от стояка в квартиру (не важно, до или после прибора учета), установлен электромагнитный клапан. При подаче сигнала от датчика, вода перекрывается, и дальнейший потоп останавливается.

Естественно, система отключения воды еще и сигнализирует о проблеме любым из вышеуказанных способов. Эти устройства в широком ассортименте предлагаются сантехническими магазинами. Казалось бы, материальный ущерб от потопа потенциально выше цены спокойствия. Однако большинство граждан живет по принципу «пока гром не грянет, мужик не перекрестится». А более прогрессивные (и рачительные) владельцы жилья, изготавливают датчик протечки воды своими руками.

Принцип работы датчиков протечек

Говоря о блок схеме - все очень просто. Некий элемент фиксирует жидкость в точке его размещения, и подает сигнал в исполнительный модуль. Который, в зависимости от настроек может подавать световые или звуковые сигналы, и (или) дать команду на перекрытие задвижки.

Как устроены датчики

Поплавковый механизм рассматривать не будем, поскольку в домашних условиях он не эффективен. Там все просто: основание закреплено на полу, на шарнире подвешен поплавок, который при всплытии замыкает контакты выключателя. Подобный принцип (только механический) применяется в бачке унитаза.

Чаще всего применяется контактный датчик, который использует естественную способность воды проводить электрический ток.

Разумеется, это не полноценный включатель, через который проходит напряжение 220 вольт. К двум контактным пластинам (см. иллюстрацию) подключается чувствительная схема, которая фиксирует даже небольшую силу тока. Датчик может быть отдельным (как на фотографии выше), или встроенным в общий корпус. Такое решение применяется на мобильных автономных датчиках, работающих от батарейки или аккумулятора.

Если у вас нет системы «умный дом», а вода подается без всяких электромагнитных клапанов, именно простейший датчик со звуковой сигнализацией можно использовать в качестве стартового варианта.

Самодельный датчик простейшей конструкции

Несмотря на примитивность, датчик достаточно эффективен. Домашних мастеров эта модель привлекает копеечной стоимостью радиодеталей, и возможностью сборки буквально «на коленке».

Базовый элемент (VT1) - NPN транзистор серии BC515 (517, 618 и им подобные). С его помощью подается питание на звуковой сигнализатор (B1). Это простейший готовый зуммер со встроенным генератором, который можно приобрести за копейки, или выпаять из какого-нибудь старого электроприбора. Питание требуется порядка 9 вольт (конкретно для этой схемы). Есть варианты под 3 или 12 вольтовые батарейки. В нашем случае используется элемент питания типа «Крона».

Как работает схема

Секрет в чувствительности перехода «коллектор-база». Как только через него начинает протекать минимальный ток, открывается эмиттер, и подается питание на звуковой элемент. Раздается писк. Параллельно можно подключить светодиод, добавляя визуальную сигнализацию.

Сигнал к открытию коллекторного перехода дает та самая вода, о наличии которой надо сигнализировать. Из металла, не подверженного коррозии, изготавливаются электроды. Это могут быть два кусочка медной проволоки, которую можно просто облудить. На схеме точки подключения: (Электроды).

Собрать такой датчик можно на макетной плате.

Затем прибор помещается в пластиковую коробочку (можно в мыльницу), в донышке которой проделаны отверстия. Желательно, чтобы при попадании воды, она не касалась монтажной платы. Если хочется эстетики, печатную плату можно вытравить.

Недостаток такого датчика - различная чувствительность к разным типам воды. Например, дистиллят от протекающего кондиционера может остаться незамеченным.

Исходя из концепции: недорогой автономный прибор, его нельзя интегрировать в единую систему защиты вашего дома, даже самодельную.

Более сложная схема, с регулятором чувствительности

Себестоимость такой схемы тоже минимальная. Выполняется на транзисторе КТ972А.

Принцип работы аналогичен предыдущему варианту, с одним отличием. Сформированный сигнал о наличии протечки (после открытия эмиттерного перехода транзистора), вместо сигнального устройства (светодиод или звуковой элемент), подается на обмотку реле. Подойдет любое слаботочное устройство, типа РЭС 60. Главное, чтобы напряжение питания схемы соответствовало характеристикам реле. А уже с его контактов, информацию можно подавать на исполнительное устройство: система «умный дом», сигнализация, GSM передатчик (на мобильный телефон), аварийный электромагнитный клапан.

Дополнительное преимущество такого исполнения - возможность настройки чувствительности. С помощью переменного резистора регулируется ток перехода «коллектор-база». Вы можете настроить порог срабатывания от появления росы или конденсата, до полноценного погружения датчика (контактной пластины) в воду.

Датчик протечки на микросхеме LM7555

Этот радиоэлемент является аналогом микросхемы LM555, только с меньшими параметрами потребления энергии. Информация о наличии влаги поступает с контактной площадки, обозначенной на иллюстрации, как «датчик»:

Для повышения порога срабатывания, ее лучше выполнить в виде отдельной пластины, соединенной с основной схемой проводами с минимальным сопротивлением.

Оптимальный вариант на фото:

Если вы не хотите тратить деньги на покупку подобного «концевика», его можно вытравить самостоятельно. Только обязательно покройте оловом контактные дорожки, для повышения коррозийной устойчивости.

Как только между дорожками появляется вода, пластина становится замкнутым проводником. Через встроенный в микросхему компаратор начинает протекать электрический ток. Напряжение быстро возрастает до порога срабатывания, при этом открывается транзистор (который выполняет роль ключа). Правая часть схемы - командно исполнительная. В зависимости от исполнения, происходит следующее:

  1. Верхняя схема. Срабатывает сигнал на так называемом «бузере» (пищалке), и светится опционально подключенный светодиод. Есть еще один вариант использования: несколько датчиков объединяются в единую параллельную схему с общим звуковым сигнализатором, а светодиоды остаются на каждом блоке. При срабатывании звукового сигнала, вы безошибочно определите (по аварийному свечению), какой именно блок сработал.
  2. Нижняя схема. Сигнал от датчика поступает на электромагнитный аварийный клапан, расположенный на стояке подачи воды. В этом случае, вода перекрывается автоматически, локализуя проблему. Если вас в момент аварии нет дома, потоп не случится, материальные потери будут минимальными.

Информация: Разумеется, можно своими руками изготовить и запорный клапан. Однако это сложное устройство лучше приобрести в готовом виде.

Схему можно выполнить по макету печатной платы, которая одинаково подойдет как для LM7555, так и для LM555. Устройство питается от напряжения 5 вольт.

Важно! Блок питания должен быть с гальванической развязкой от 220 вольт, чтобы опасное напряжение не попало в лужу воды при протечке.

На самом деле, идеальный вариант - использование зарядного устройства от старой мобилки.

Себестоимость подобной самоделки не превышает 50–100 рублей (на покупку деталей). При наличии в запасниках старой элементной базы, можно свести затраты к нулю.

Корпус - на ваше усмотрение. При таких компактных размерах, найти подходящую коробочку не составит труда. Главное, чтобы от общей платы до контактной пластины датчика, расстояние было не более 1 метра.

Общие принципы размещения датчиков протечки

Любой владелец помещения (жилого или офисного) знает, где проходят коммуникации водоснабжения или отопления. Потенциальных мест протечки не так много:

  • запорные краны, смесители;
  • соединительные муфты, тройники (особенно это касается пропиленовых труб, которые соединяются методом пайки);
  • вводные патрубки и фланцы бачка унитаза, стиральной или посудомоечной машины, гибкие шланги кухонных смесителей;
  • места подключения приборов учета (счетчиков воды);
  • радиаторы отопления (могут протекать как по всей поверхности, так и в местах соединения с магистралью).

Разумеется, в идеале, датчики должны быть расположены именно под этими устройствами. Но тогда их может быть слишком много, даже для варианта самостоятельного изготовления.

На самом деле, достаточно 1–2 датчиков на потенциально опасное помещение. Если это ванная комната, или туалет - как правило, имеется порожек входной двери. В этом случае, вода набирается, как в поддон, слой может достигать 1–2 см, пока жидкость не прольется через порог. В этом случае, место установки не критично, главное, чтобы датчик не мешал передвигаться по комнате.

На кухне датчики устанавливаются на пол под раковиной, за стиральной или посудомоечной машиной. Если возникнет протечка, она сначала образует лужицу, в которой и сработает сигнализация.

В остальных помещениях прибор устанавливается под радиаторами отопления, поскольку через спальню или гостиную трубы водоснабжения не прокладываются.

Не лишним будет установка датчика в нишу, по которой проходят стояки трубопроводов и канализации.

Наиболее критичные точки прорыва воды

При равномерном рабочем давлении, риск протечки минимален. Тоже самое относится к смесителям и кранам, если вы открываете (закрываете) воду плавно. Слабое место системы трубопроводов проявляет себя при гидроударах:

  • клапан подачи воды в стиральную машину при запирании создает давление, в 2–3 раза превышающее номинал водопровода;
  • то же самое, но в меньшей степени, относится к запирающей арматуре бачка унитаза;
  • радиаторы отопления (а также места их подключения к системе) зачастую не выдерживают тестовую опрессовку, которую проводят предприятия теплоснабжения.

Как правильно размещать датчики

Контактная пластина должна располагаться как можно ближе к поверхности пола, не касаясь его. Оптимальная дистанция: 2–3 мм. Если контакты разместить непосредственно на полу, будут возникать постоянные ложные срабатывания из-за конденсата. Большое расстояние снижает эффективность защиты. 20–30 миллиметров воды, это уже проблема. Чем раньше сработает датчик, тем меньше потери.

Справочная информация

Вне зависимости от того, приобретается система защиты от протечек в магазине, или изготавливается своими руками, надо знать единые стандарты ее работы.

Классификация устройств

  • По количеству вторичных защитных устройств на объекте (запорных аварийных кранов с электромагнитным приводом). Датчики протечки не должны перекрывать все водоснабжение, если запорные системы разнесены по потребителям. Локализуется только линия, на которой обнаружена протечка.
  • По способу подачи информации об аварии водопровода (системы отопления). Местная сигнализация предполагает нахождение людей на объекте. Дистанционно передаваемая информация организуется с учетом оперативного прибытия владельца или ремонтной группы. В противном случае, она бесполезна.
  • Способ оповещения: локальная звуковая или световая сигнализация (на каждом датчике), или вывод информации на единый пульт.
  • Защита от ложных срабатываний. Как правило, точно настраиваемые датчики работают эффективнее.
  • Механическая или электрическая защита. Пример механики - системы «Аква стоп» на подающих шлангах стиральных машин. Сигнализация на таких устройствах отсутствует, сфера применения ограничена. Самостоятельное изготовление невозможно.

Вывод

Затратив немного времени, и минимум средств, вы сможете обезопасить себя от серьезных финансовых проблем, связанных с потопом в квартире.

Видео по теме

Аварийная ситуация, возникающая в системе холодного или горячего водоснабжения, всегда доставляет много неприятностей не только владельцу квартиры, но и всем соседям, особенно проживающим на нижних этажах. После нарушения герметичности водопровода, растекающаяся из него вода проходит по строительным конструкциям, повреждает обои, натяжные потолки, декоративные покрытия.

Особую опасность она доставляет бытовой электропроводке, нарушая состояние изоляции и создавая непредвиденные токи утечек, которые снижают и дома.

Предотвратить развитие серьёзных последствий протечки воды позволяет система автоматического оповещения жильцов, оперативно срабатывающая при появлении первых признаков влаги. Собрать ее под силу любому домашнему мастеру, умеющему паять простые радиолюбительские устройства.

  1. биполярном транзисторе NPN конструкции 2N5551 ;
  2. микросхеме К561ЛА7 ;
  3. микросхеме К561ЛН2 .

Как сделать датчик влажности

Он является общим элементом для любой из трех рассматриваемых схем и работает за счет электропроводности воды.

Датчик делают из двух электродов, которые могут располагаться в или вертикали относительно друг друга.

Горизонтальная конструкция контактных площадок

В состав входят два сухих электрода, которые могут быть различной конфигурации. Их удобно вырезать из фольгированной стеклопластиковой или гетинаксовой платы, прорезав не ней изолирующие дорожки.

С формой и габаритами датчика влажности можно поэкспериментировать, тщательно подобрать их к конкретным условиям размещения. Если нет под рукой платы, то контактные площадки вырезают из обычной фольги или жести, наклеивая их на плоскую диэлектрическую поверхность.


На один электрод подводится положительный потенциал электроэнергии, а на другой - отрицательный. Они разнесены на одинаковое расстояние, отделены воздушным зазором, обладающим высокими диэлектрическими свойствами.

Когда на электродах появляется влага, то через ее слой начинает проходить электрический ток, который изменяет состояние электронной схемы датчика протечки, вызывая срабатывание световой и звуковой сигнализации.

Вертикальная конструкция контактных площадок

Две полоски фольги размерами примерно 10х40 мм (габариты условны и принципиального значения не имеют) закрепляют параллельными плоскостями на небольшом удалении так, чтобы исключить их самопроизвольное касание при работе.

Подключать датчик влажности к электронной схеме лучше короткими проводами или использовать экран или витую пару.

Совет! Повысить чувствительность самодельного датчика можно простым действием - положить его контактными площадками на кусочек туалетной бумаги или несколько слоев марли, расположенной в месте вероятной протечки воды на полу. За счет гигроскопичных свойств этих материалов даже при небольшой влажности возникает хороший токопроводящий слой.

Датчик протечки воды на транзисторе 2N5551

Это наиболее простая, но вполне надежная схема, которую может собрать даже начинающий радиолюбитель.

Состав деталей

Кроме датчика влажности для работы электрической схемы потребуется:

  • биполярный NPN транзистор 2N5551 или один из его аналогов: ВС517, ВС618, ВС 879, 2SD1207, 2SD1853, 2SD2088;
  • светодиод VD1;
  • элемент питания на 3 вольта, например, плоская литиевая батарейка;
  • трехвольтовый пьезоизлучатель;
  • соединительные провода.

Все эти детали помещаются в небольшую пластиковую коробочку, служащую корпусом и соединяются пайкой навесным монтажом.

Алгоритм срабатывания датчика протечки довольно прост. В сухом положении контактных площадок транзистор VT1 закрыт и через его полупроводниковый переход коллектор-эмиттер ток не проходит.

При появлении воды в датчике влажности между электродами возникает замыкание, положительный потенциал элемента питания поступает на базу транзистора и открывает переход от коллектора к эмиттеру.

Через пьезоизлучатель и параллельно подключенный светодиод начинает протекать ток. Включается звуковой и световой сигнал, оповещающие жильцов о повышенной влажности.

Сборку и работу подобной схемы на базе транзистора BC517 можно посмотреть в коротком видеоролике владельца “Руки из плеч”.

Датчик протечки воды на микросхеме К561ЛА7

Он работает по более сложной, но вполне доступной схеме, обладающей более высокой надежностью и чувствительностью.

Состав деталей

Кроме датчика влажности и микросхемы К561ЛА7 для сборки потребуется:

  • биполярный транзистор VT1 серии КТ315Г;
  • резисторы на 1 Мом,100 Ом и килооомные: 1,5 К, 10 К, 300 К;
  • два полярных конденсатора на 2,2 и 47 микрофарад для работы под напряжением до 16 вольт;
  • конденсатор на 200 пикофарад;
  • светодиод;
  • генератор звуковых волн ЗП-1;
  • переключатель SA-1;
  • источник питания.

Аналогами К561ЛА7 являются К176ЛА7, 564ЛА7, 164ЛА6, HFF4011BP, HCF4011BE, СD4011A, СD4011.


Схема не критична к уровню питающего напряжения и надежно работает при его пределах от 5 до 15 вольт.

Принцип работы электрической схемы

Когда на сухие контакты датчика влажности поступает напряжение от источника питания, то светодиод не горит, а звуковой генератор не вырабатывает сигналы: транзисторный переход эмиттер-коллектор находится в закрытом состоянии.


При появлении тока через датчик влажности сквозь ключи микросхемы потечет ток на базу транзистора, и он откроется. Загорится светодиод и сработает звуковая сигнализация.

Когда схема питается от сети, а не от автономного источника, то переключатель SA1 лучше перевести в нижнее положение. В этом случае светодиод станет сразу светиться, указывая на готовность датчика протечки к срабатыванию, а погаснет он при открытии транзистора.

Изменением емкости конденсатора С2 регулируют тональность звукового генератора.

Потребление тока электрической схемой составляет:

  • примерно 1 мКа в режиме ожидания;
  • 25 мА при срабатывании.

Датчик протечки воды на микросхеме К561ЛН2

Он работает по схеме, подобной предыдущей, тоже обладает высокой чувствительностью и надежностью.

Состав деталей

Кроме датчика влажности и микросхемы К561ЛН2 потребуется:

  • биполярный транзистор VT1 серии КТ3107Д;
  • резисторы на 3 Мом и 30 К три штуки, 430 К - два, 430 К и 57К - по одному;
  • полярный конденсатор на 100 микрофарад для работы под напряжением до 16 вольт;
  • конденсатор на 0,01 мк - два и 0,1 мк- тоже два;
  • генератор звуковых волн ЗП-22;
  • источник питания на 6÷9 вольт.

Принцип работы электрической схемы

При сухих контактах датчика влажности транзистор VD1 закрыт, а при появлении на них воды его полупроводниковый переход открывается и происходит запуск звукового генератора, выдающего сигнал тревоги.


Эта схема тоже обладает небольшим потреблением мощности. В режиме ожидания ток нагрузки источника напряжения не превышает 1 мКА, а при срабатывании он составляет порядка 3 мА.

Датчик протечки воды, собранный своими руками по любой из вышеприведенных электрических схем, можно установить в любом проблемном месте, где высока вероятность создания аварийной ситуации в системе водоснабжения под:

  • стиральной или посудомоечной машиной;
  • раковиной;
  • ванной;
  • системой питающих трубопроводов водоснабжения.

Его звуковое предупреждение своевременно оповестит жильцов квартиры о начале протечки воды, но не обеспечит ее автоматическое отключение. Выполнять такую функцию предназначены другие устройства, о которых рассказывает владелец видеоролика Remontkv.pro “Как не затопить соседей”.

Прибор, которым измеряют уровень влажности, называется гигрометром или просто датчиком влажности. В повседневной жизни влажность выступает немаловажным параметром, и часто не только для самой обычной жизни, но и для различной техники, и для сельского хозяйства (влажность почвы) и много для чего еще.

В частности, от степени влажности воздуха немало зависит наше самочувствие. Особенно чувствительными к влажности являются метеозависимые люди, а также люди, страдающие гипертонической болезнью, бронхиальной астмой, заболеваниями сердечно-сосудистой системы.

При высокой сухости воздуха даже здоровые люди ощущают дискомфорт, сонливость, зуд и раздражение кожных покровов. Часто сухой воздух может спровоцировать заболевания дыхательной системы, начиная с ОРЗ и ОРВИ, и заканчивая даже пневмонией.

На предприятиях влажность воздуха способна влиять на сохранность продукции и оборудования, а в сельском хозяйстве однозначно влияние влажности почвы на плодородие и т. д. Здесь и спасает применение датчиков влажности — гигрометров .

Какие-то технические приборы изначально калибруются под строго требуемую важность, и иногда чтобы провести точную настройку прибора, важно располагать точным значением влажности в окружающей среде.

Влажность может измеряться несколькими из возможных величин:

    Для определения влажности как воздуха, так и других газов, измерения проводятся в граммах на кубометр, когда речь об абсолютном значении влажности, либо в единицах RH, когда речь о влажности относительной.

    Для измеряется влажности твердых тел или в жидкостях подходят измерения в процентах от массы исследуемых образцов.

    Для определения влажности плохо смешиваемых жидкостей, единицами измерения будут служить ppm (сколько частей воды приходится на 1000000 частей веса образца).

По принципу действия, гигрометры делятся на:

    емкостные;

    резистивные;

    термисторные;

    оптические;

    электронные.

Емкостные гигрометры, в самом простом случае, представляют собой конденсаторы с воздухом в качестве диэлектрика в зазоре. Известно, что у воздуха диэлектрическая проницаемость непосредственно связана с влажностью, а изменения влажности диэлектрика приводят и к изменениям в емкости воздушного конденсатора.

Более сложный вариант емкостного датчика влажности в воздушном зазоре содержит диэлектрик, с диэлектрической проницаемостью, могущей сильно меняться под влиянием на него влажности. Данный подход делает качество датчика лучше, чем просто с воздухом между обкладками конденсатора.

Второй вариант хорошо подходит для проведения измерений относительно содержания воды в твердых веществах. Исследуемый объект размещается между обкладками такого конденсатора, к примеру объектом может быть таблетка, а сам конденсатор присоединяется к колебательному контуру и к электронному генератору, при этом измеряется собственная частота полученного контура, и по измеренной частоте «вычисляется» емкость, полученная при внесении исследуемого образца.

Безусловно, данный метод обладает и некоторыми недостатками, например при влажности образца ниже 0.5% он будет неточным, кроме того, измеряемый образец должен быть очищен от частиц, имеющих высокую диэлектрическую проницаемость, к тому же важна и форма образца в процессе измерений, она не должна изменяться в ходе исследования.

Третий тип емкостного датчика влажности - это емкостный тонкопленочный гигрометр. Он включает в себя подложку, на которую нанесены два гребенчатых электрода. Гребенчатые электроды играют в данном случае роль обкладок. С целью термокомпенсации в датчик дополнительно вводят еще и два термодатчика.

Такой датчик включает в себя два электрода, которые нанесены на подложку, а поверх на сами электроды нанесен слой материала, который отличается достаточно малым сопротивлением, сильно, однако, меняющимся в зависимости от влажности.

Подходящим материалом в устройстве может выступать оксид алюминия. Данный оксид хорошо поглощает из внешней среды воду, при этом удельное сопротивление его заметно изменяется. В результате общее сопротивление цепи измерения такого датчика будет значительно зависеть от влажности. Так, об уровне влажности станет свидетельствовать величина протекающего тока. Достоинство датчиков такого типа - малая их цена.

Термисторный гигрометр состоит из пары одинаковых термисторов. К слову напомним, что — это нелинейный электронный компонент, сопротивление которого сильно зависит от его температуры.

Один из включенных в схему термисторов размещают в герметичной камере с сухим воздухом. А другой - в камере с отверстиями, через которые в нее поступает воздух с характерной влажностью, значение которой требуется измерить. Термисторы соединяют по мостовой схеме, на одну из диагоналей моста подается напряжение, а с другой диагонали считывают показания.

В случае, когда напряжение на выходных клеммах равно нулю, температуры обоих компонентов равны, следовательно одинакова и влажность. В случае, когда на выходе будет получено не нулевое напряжение, то это свидетельствует о наличии разности влажностей в камерах. Так, по значению полученного при измерениях напряжения определяют влажность.

У неискушенного исследователя может возникнуть справедливый вопрос, почему же температура термистора меняется при его взаимодействии с влажным воздухом? А дело все в том, что при увеличении влажности, с корпуса термистора начинает испаряться вода, при этом температура корпуса уменьшается, и чем выше влажность, тем более интенсивно происходит испарение, и тем стремительнее остывает термистор.

4) Оптический (конденсационный) датчик влажности

Этот вид датчиков наиболее точен. В основе работы оптического датчика влажности — явление связанной с понятием «точка росы». В момент достижения температурой точки росы, газообразная и жидкая фазы - в условии термодинамического равновесия.

Так, если взять стекло, и установит в газообразной среде, где температура в момент исследования выше точки росы, а затем начать процесс охлаждения данного стекла, то при конкретном значении температуры на поверхности стекла начнет образовываться водяной конденсат, это водяной пар станет переходить в жидкую фазу. Данная температура и будет как раз точкой росы.

Так вот, температура точки росы неразрывно связана и зависит от таких параметров как влажность и давление в окружающей среде. В результате, имея возможность измерения давления и температуры точки росы, получится легко определить и влажность. Этот принцип служит основой для функционирования оптических датчиков влажности.

Простейшая схема такого датчика состоит из светодиода, светящего на зеркальную поверхность. Зеркало же отражает свет, меняя его направление, и направляя на фотодетектор. В данном случае зеркало можно подогревать или охлаждать посредством специального устройства регулирования температуры высокой точности. Часто таким устройством выступает термоэлектрический насос. Конечно же, на зеркало устанавливают датчик для измерения температуры.

Прежде чем начать измерения, температуру зеркала выставляют на значение, которое заведомо выше температуры точки росы. Дальше осуществляют постепенное охлаждение зеркала. В момент, когда температура начнет пересекать точку росы, на поверхности зеркала тут же начнут конденсироваться капли воды, и световой луч от диода приломится из-за них, рассеется, а это приведет к уменьшению тока в цепи фотодетектора. Через обратную связь фотодетектор взаимодействует с регулятором температуры зеркала.

Так, опираясь на информацию, полученную в форме сигналов от фотодетектора, регулятор температуры станет удерживать температуру на поверхности зеркала точно равной точке росы, а термодатчик соответственно покажет температуру. Так, при известных давлении и температуре можно точно определить основные показатели влажности.

Оптический датчик влажности обладает самой высокой точностью, недостижимой другими типами датчиков, плюс отсутствие гистерезиса. Недостаток — самая высокая цена из всех, плюс большое потребление электроэнергии. К тому же необходимо следить за тем, чтобы зеркало было чистым.

Принцип работы электронного датчика влажности воздуха основан на изменении концентрации электролита, покрывающего собой любой электроизоляционный материал. Существуют такие приборы с автоматическим подогревом с привязкой к точке росы.

Часто точка росы измеряется над концентрированным раствором хлорида лития, который является очень чувствительным к минимальным изменениям влажности. Для максимального удобства такой гигрометр зачастую дополнительно оборудуют термометром. Этот прибор обладает высокой точностью и малой погрешностью. Он способен измерять влажность независимо от температуры окружающей среды.

Популярны и простые электронные гигрометры в форме двух электродов, которые просто втыкаются в почву, контролируя ее влажность по степени проводимости в зависимости от этой самой влажности. Такие сенсоры популярны у поклонников , поскольку можно легко настроить автоматический полив грядки или цветка в горшке, на случай если поливать в ручную некогда или не удобно.

Прежде чем купить датчик, подумайте, что вам нужно будет измерять, относительную или абсолютную влажность, воздуха или почвы, каков предвидится диапазон измерений, важен ли гистерезис, и какая нужна точность. Самый точный датчик — оптический. Обратите внимание на класс защиты IP, на диапазон рабочих температур, в зависимости от конкретных условий, где будет использоваться датчик, подойдут ли вам параметры.

Андрей Повный

Датчики температуры (термодатчики) для теплицы

В качестве преобразователей температуры в электрический сигнал используются различные термодатчики - терморезисторы, термотранзисторы и т. д. Сопротивление этих датчиков пропорционально (прямо или обратно) температуре окружающей среды.

Для самостоятельного изготовления термодатчиков можно использовать отрицательное свойство транзисторов - уход их параметров от температуры. В транзисторах ранних выпусков этот уход был настолько велик, что оставленный на солнце транзисторный радиоприемник начинал издавать искаженный звук, а через некоторое время или замолкал вообще, или просто хрипел.

Это происходило оттого, что нагревшись, транзисторы начинали пропускать существенно больший ток, рабочие точки транзисторов смещались и радиоприемник переставал работать.

Это свойство транзисторов с успехом можно использовать при изготовлении своими руками термодатчиков для теплицы и не только их. И чем больше уход параметров транзистора от температуры, тем более чувствительным получится датчик. Для термодатчиков подойдут транзисторы ранних выпусков - МП15А, МП16Б, МП20Б, МП41А, МП42Б, МП25А.Б. МП26А.Б, МП416Б, ГТ308Б, П423, П401-403.

При использовании их в качестве датчиков не требуется какой-либо доработки и преобразование температуры в электрический сигнал обеспечивается определенным включением транзистора в электронную схему. Чтобы получить представление о работе транзистора в качестве термодатчика, проведем небольшой эксперимент.

Соберем схему своими руками по рис. З.а (цоколевка большинства перечисленных транзисторов показана на рис. 3,б) и подключим к источнику питания. Если под рукой не окажется сетевого источника питания, можно использовать батарею «Крона» или две последовательно включенные батареи от карманного фонаря. Вольтметром будем контролировать напряжение на резисторе 5,1 кОм.

Отметим величину напряжения при подключении к схеме источника питания. Подогреем корпус транзистора паяльником не касаясь его - напряжение на резисторе начинает расти. Отведем паяльник в сторону - через некоторое время стрелка вольтметра вернется на прежнее место. Если постоянный резистор 5,1 кОм заменить на переменный, получим возможность изменять уровень напряжения на подвижном контакте при заданной температуре среды в теплице .

Но первый эксперимент показывает, что изменение напряжения на резисторе 5,1 кОм мало, а транзистор приходится сильно нагревать. Если увеличить это изменение напряжения при небольшом нагреве транзистора, то в принципе решается задача включения соответствующей нагрузки.

Увеличить это изменение напряжения можно, если собрать схему по рис. 4,а (на рис. 4,б показана цоколевка усилительного транзистора). Резистор 5,1 кОм заменим на 4,7 кОм, так как часть тока будет ответвляться в базу транзистора усилительного каскада.

Вращением движка потенциометра 4,7 кОм необходимо добиться максимального напряжения на колллекторе транзистора КТ315. Опять подогреем транзистор МП25Б - напряжение на коллекторе упадет почти до нуля и довольно быстро, причем при меньшем нагреве термодатчика. Уберем паяльник - напряжение так же быстро восстановится.

Из этих нехитрых экспериментов можно сделать следующие выводы.

  1. При нагреве транзистора МП25Б ток через него меняется - это регистрирует вольтметр в виде изменения напряжения на резисторе, включенном последовательно с транзистором МП25Б. Значит, этот транзистор может быть использован в качестве термодатчика при повышении температуры окружающей среды.
  2. Чтобы получить командный сигнал, т. е. большое изменение напряжения за короткий промежуток времени при малом нагреве (при малом изменении температуры окружающей среды), необходим усилитель, управляемый термодатчиком.

Из этих выводов следует, что на основе транзистора МП25Б, используемого в качестве термодатчика, и усилителя напряжения с большим коэффициентом усиления, можно создать электронный термометр для контроля и регулирования температуры внутри теплицы при ее повышении. Попросту говоря, такая схема в состоянии вовремя включить вентилятор и проветрить теплицу, оранжерею или замкнутый объем, где установлена гидропонная установка - застекленный балкон или лоджия.

А как быть, если температура среды понизится и нужно включать не вентилятор, а калорифер, чтобы поднять температуру?

Поменяем местами термодатчик и переменный резистор и включим последовательно с ним еще один на 36 кОм (рис. 5). С помощью движка потенциометра добьемся максимального напряжения на коллекторе транзистора KT315.

Нальем в чашку немного холодной воды, бросим кусочки колотого льда и опустим в воду термометр и транзистор МП25Б так, чтобы вода не касалась выводов транзистора. Через 1...2 мин корпус транзистора остынет и вольтметр покажет быстрый спад напряжения почти до нуля.

Достанем кусочки льда из чашки и дольем теплой воды до прежнего уровня. Через некоторое время температура воды и корпуса транзистора восстановится и вольтметр отметит быстрый рост напряжения до первоначального уровня. Схема вернулась в исходное положение.

Из этих опытов следует: при охлаждении транзистора МП25Б ток через него также меняется, но в обратную сторону и при перемене места подключения транзистора МП25Б в прежней схеме его можно использовать в качестве термодатчика при понижении температуры.

И здесь напрашивается основополагающий вывод: на основе транзистора МП25Б, используемого в качестве термодатчика и усилителя с большим коэффициентом усиления, можно создать электронный термометр для контроля и регулирования температуры в теплице при ее понижении. Эта схема вовремя включит калорифер или систему обогрева почвы.

Усилитель же с большим коэффициентом усиления необходим для включения нагрузок при малейшем изменении температуры (0,5...2 °С). Датчики воздушных термометров представляют собой собственно транзисторы указанных выше типов. Необходимо отметить, что чем выше статический коэффициент передачи тока транзистора (коэффициент усиления), тем чувствительнее датчик.

Датчик температуры почвы - такой же транзистор, помещенный в стеклянную пробирку и залитый эпоксидным клеем до середины выводов, к которым припаяны отводящие провода. Места паек и выводы необходимо закрыть отрезками виниловых трубочек, плотно надвинув их до упора в корпус транзистора. Провода пропускаются через резиновую шайбу (можно использовать резиновые клапаны от кранбукс), которая плотно вставляется в горло пробирки. Датчик готов.