Украшения. Аксессуары. Дизайн ногтей. Цвета. Нанесение. Ногти

Генератор для настройки резонанса катушек металлоискателей. Металлоискатель с низкой рабочей частотой

ВНИМАНИЕ! При настройке и эксплуатации металлодетектора следует соблюдать меры электробезопасности, так как в приборе имеется высокое, потенциально опасное для жизни напряжение – на коллекторе ключевого транзистора и на поисковой катушке.
ВНИМАНИЕ! Изучите законодательство Вашей страны, связанное с возможными последствиями поисковых действий с металлоискателем, и соблюдайте эти требования!

Вся информация на сайте представлена исключительно в образовательных целях.
Администратор сайта не несет ответственности за возможные последствия использования представленной информации.

Типы металлодетекторов

Существует три основных типа металлодетекторов:

Импульсный (англ. Pulse Induction, PI ) металлодетектор (металлоискатель) (англ. Pulse Induction Metal Detector ) представляет собой одну из многочисленных разновидностей этих полезных и занимательных устройств. Импульсные металлодетекторы известны с начала 1960-х годов. Большой вклад в их разработку внес английский инженер Эрик Фостер (Eric Foster) .

Теоретические основы работы импульсного металлодетектора


В процессе его работы с помощью мощного транзисторного ключа поисковая катушка-излучатель периодически на короткое время подключается к источнику питания, что вызывает протекание через катушку тока экспоненциально нарастающего тока силой до нескольких ампер и более (первая часть кривой a ).
Напряженность магнитного поля $H$, создаваемого током $I$ в круглой катушке из $w$ витков радиусом $R$, на оси катушки расстоянии $z$ от центра катушки определяется выражением: $H = { {2 w I {R^2}} \over { {({R^2} + {z^2})}^{3 \over 2} } }$.
При резком прерывании этого тока (вторая часть кривой a ) на катушке возникает импульс напряжения самоиндукции (кривая b ) величиной до сотен вольт. Подобный процесс происходит и в катушке зажигания автомобиля.
При расположении вблизи катушки токопроводящего объекта - мишени (англ. target ) резко изменяющееся при прерывании тока первичное магнитное поле катушки пронизывает этот объект и создает в нем вихревые токи (англ. eddy currents ) (кривая c ). Эти вихревые токи всегда оказывают противодействие вызвавшему их изменению магнитного поля, создавая вторичное магнитное поле. Это переменное магнитное поле достигает витков поисковой катушки и наводит в ней переменное напряжение, которое накладывается на напряжение самоиндукции и приводит к удлинению заднего фронта импульса напряжения на катушке (кривая d ).
Для детектирования факта удлинения фронта импульса сигнал (напряжение на поисковой катушке) стробируется с помощью электронного ключа (кривая e ). При этом отсекается сигнал от передаваемого импульса и всплеск напряжения самоиндукции сразу после его окончания. Короткая задержка стробирования выбирается таким образом, чтобы за это время успели завершиться переходные процессы, вызванные прерыванием тока в катушке (кривая b ).
Таким образом происходит разделение передаваемого и принимаемого сигналов, а единственная катушка используется как для передачи, так и для приема сигнала (TR ).

Схема импульсного металлодетектора

В импульсном металлодетекторе можно выделить генератор импульсов, транзисторный ключ, узел поисковой катушки, схему детектирования и схему индикации.
Генератор импульсов
Две основные разновидности - генератор на интегральном таймере NE555 и генератор на двух транзисторах.


Транзисторный ключ
В качестве ключевого элемента используется мощный MOSFET с предварительным каскадом на биполярном транзисторе.
Во многих конструкциях в качестве ключевого транзистора применяется IRF740 (400 В, 0,55 Ом, 10 А).
Узел поисковой катушки
Катушка намотана "внавал" медным проводом диаметром 1,4 мм. Сопротивление катушки составляет ~ 0,3 Ом.


изготовление поисковой катушки


собранная катушка
Нижеприведенная схема применяется в металлодетекторах PIRAT , BM8042 - КОЩЕЙ-5И, White"s Surfmaster PI .

Параллельно поисковой катушке L включен резистор R7 для гашения импульса напряжения самоиндукции, а два включенных встречно-параллельно диода VD1 и VD2 совместно с резистором R8 ограничивают величину импульса, поступающего на вход схемы детектирования.
Диоды VD1 , VD2 - 1N4148.
Резистор R7 - 220...390 Ом.
Резистор R8 - 390...1000 Ом.
Схема детектирования
Схема детектирования состоит из двух операционных усилителей, один из которых работает в режиме усилителя, а второй в режиме компаратора.
Схема индикации
В простейшем случае схема звуковой индикации представляет собой усилитель звуковой частоты на биполярном транзисторе, нагруженный на динамик.

Моделирование металлодетектора

Изучить особенности работы и настройки рассматриваемого устройства можно с помощью схемотехнического моделирования металлодетектора. Предлагаю Вашему вниманию разработанную мной модель импульсного металлодетектора PIRAT (сокращение от PI - импульсный, RA-T - radioskot - сайт разработчиков) для популярного симулятора LTspice :
щелкните мышкой по рисунку для просмотра в крупном масштабе


Снимок окна программы LTspice с открытой моделью

Для изучения возможностей программы LTspice и основ работы с ней можете воспользоваться моим пособием:
Воронин А.В. Компьютерное моделирование переходных процессов в линейных электрических цепях: учеб.-метод. пособие. - Гомель: БелГУТ, 2014. - 94 с.
(скачать - PDF, 1,98 МБ)

Модель металлодетектора содержит генератор на таймере NE555 , узел поисковой катушки и схему детектирования (без схемы индикации).
Файл модели:
Для запуска также потребуются файлы модели операционного усилителя TL072 :
и .
Файл TL072.asy скопировать в директорию \lib\sub директории LTspice .
Файл TL072.sub скопировать в директорию \lib\sym\Opamps директории LTspice

Вы можете изменять при моделировании:
напряжение питания - параметр U ;
сопротивления резисторов настройки - параметры R12 и R13 ;
индуктивность и сопротивление поисковой катушки - параметры L и R ;
индуктивность мишени и коэффициент связи с ней - параметры Lt и Km соответственно,
а также номиналы других элементов цепи.

Результаты моделирования позволяют анализировать электромагнитные процессы в металлодетекторе:


импульсы на выходе таймера NE555

Генератор на базе таймера NE555 вырабатывает последовательность прямоугольных импульсов с большой скважностью.
В моем металлоискателе длина импульса составляет 0,17 мс, период повторения - 15,6 мс (частота повторения 64 Гц), причем расчетные значения совпадают с полученными при моделировании.

Резистор R7 предназначен для создания пути для тока при размыкании цепи посредством выключения MOSFET а (в модели обозначен M1 ). Энергия магнитного поля, накопленная в катушке, рассеивается в этом резисторе. Я выполнил моделирование при различных значения сопротивления шунтирующего катушку резистора (напряжение питания 9 вольт) и представил зависимость максимального напряжения на MOSFET е от сопротивления резистора в виде графика:


Как видно из графика, при увеличении сопротивления резистора пиковое значение напряжения возрастает (теоретически стремится к бесконечности). Если это напряжение превысит предельно допустимое напряжение для транзистора, то это может вызвать его пробой.

Также на максимальное значение импульса напряжения на катушке оказывает сильное влияние величина напряжения питания. Результаты моделирования приведены для сопротивления шунтирующего резистора R7 , равного 300 Ом:


На вышеприведенном графике видна линейная зависимость пика импульса напряжения на катушке от напряжения питания.



токи в катушке и мишени

щелкните мышкой по рисунку для просмотра в крупном масштабе


ток в катушке и напряжения в детектирующей части схемы

Увеличение сопротивления переменных резисторов R12+R13 смещает вниз напряжение на прямом входе ОУ2, и оно перестает превышать напряжение на инверсном входе ОУ2, при этом импульсы на выходе ОУ2 отсутствуют. При повышении напряжения питания требуется увеличивать сопротивление переменных резисторов до исчезновения импульсов на выходе ОУ2.


импульс напряжения на катушке

О применении Arduino в таком металлодетекторе Вы можете прочитать .

Источники
1 Энциклопедия полимеров. В.А. Каргин и др. Т.1 - М.: "Советская Энциклопедия", 1972. С. 742.

Надёжная схема простого импульсного металлоискателя

Схема простого металлоискателя представленного в этой статье была разработана ребятами с сайта radioskot. За свою простоту и надёжность детектор получил большую популярность у радиолюбителей и кладоискателей России и стран ближнего зарубежья. Очень низкая себестоимость, доступность элементарной базы и отличные технические характеристики делают его лидером в категории импульсных металлоискателей, несложную конструкцию которого сможет собрать и настроить даже начинающий радиолюбитель.

Технические характеристики:

Напряжение питания: 9-12 Вольт.
Потребляемый ток: 30-50 мА.
Чувствительность: Монета 25 мм — 20 см, крупные предметы — 150 см.

Принципиальная схема, рис.1

Рис.1

Принцип работы этого металлоискателя основан на изменении времени затухания импульса в поисковой катушке, которое увеличивается с приближением металлических предметов. Прибор состоит из передающего блока (генератор импульсов на таймере NE555, мощный ключ на полевом транзисторе) и приёмной части на операционном усилителе К157УД2 с выходным транзистором Т3. Поисковая катушка L1 намотана на оправку 180-200 мм и содержит 25-30 витков эмалированного провода диаметром 0.5-0.8 мм, экранировать катушку не нужно. Оптимальные параметры работы генератора на NE555: частота 125-150 Гц, длительность импульса 125-150 мкс, при соблюдении этих параметров аппарат потребляет минимальный ток и имеет максимальную чувствительность.

Печатная плата металлоискателя, рис.2

Рис.2

После сборки схемы наладить металлоискатель очень просто, включаем питание и ждём окончания переходных процессов в течении 15 секунд, подбором резистора R12 добиваемся того, чтобы при среднем положении переменного резистора R13 в динамике не было звука генератора и слышались только редкие щелчки, поисковая катушка при настройке должна находится вдали от металлических предметов. При приближении металла в динамике должен появляться звук с частотой работы таймера NE555. После проверки работы и чувствительности прибора, печатную плату можно поместить в небольшую пластиковую коробку и закрепить на штанге к которой крепится поисковая катушка.

В полевых условиях эта схема простого металлоискателя показала себя с лучшей стороны, работает с любым грунтом, штангу с поисковой катушкой можно погружать под воду, не реагирует на помехи от линий электропередач. Металлоискатель несмотря на простоту схемы с успехом конкурирует с дорогими импортными устройствами, если Вам не хочется тратить много денег, соберите этот аппарат и Вы не пожалеете. Желаем удачи!

С сайта radioskot

Схема металлоискателя на биениях

Схема металлоискателя приведена на рис.2.


Рис.2

На элементах DD1.3, DD1.4 собран генератор с поисковой катушкой L1. Его частота зависит от ёмкости конденсатора С2 и индуктивности L1 (числа витков). Другой генератор, на элементах DD1.1, DD1.2 - перестраиваемый с помощью резисторов R1 и R2. Он настраивается на частоту генератора с поисковой катушкой для получения нулевых биений или плавной регулировки разностной частоты. Обычно в нём применяют катушку индуктивности и переменный конденсатор (LC-контур). В данном устройстве используется RC-цепочка, что ослабило взаимное влияние генераторов, повысило их устойчивость и упростило схему. Резистор R1 изменяет частоту грубо , a R2 - плавно . Сигналы обоих генераторов через переходные конденсаторы С3 и С4 поступают на активный смеситель-детектор, выполненный на транзисторе VT1, а с него - на усилитель ЗЧ (VT2), нагрузкой которого служат головные телефоны сопротивлением 100 Ом.

Микросхему К561ЛА7 можно заменить на К176ЛА7. Чтобы меньше "плыла" частота, керамические конденсаторы в устройстве должны быть с малым ТКЕ. В этом плане хороши слюдяные конденсаторы типа "КСО" группы Г.

Поисковых катушек лучше всего изготовить три. Одну - диаметром 150 мм, вторую - 200 мм, а третью - 260 мм. Они выполнены проводом примерно одинаковой длины (36 м) и имеют соответствующее число витков (76, 58 и 45). Провод - ПЭВ 0,51 мм (от контура размагничивания старого цветного телевизора). Все три катушки - бескаркасные. Их наматывают на любой подходящий предмет цилиндрической формы (кастрюлю, банку и т.д.), предварительно подложив прокладку из резины или бумаги. Готовую обмотку снимают и в нескольких местах скрепляют нитками, а затем обматывают изоляционной лентой или скотчем. При изготовлении катушек, рекомендуется экранировать их от статического электричества.

При поиске мелких предметов из металла (гвоздей, ключей и т.п.) включается катушка диаметром 150 мм. Для поиска более крупных предметов требуется катушка побольше (200 мм). Что-нибудь вроде канализационного люка или подземной трубы определяется самой большой катушкой с диаметром 260 мм.

Для настройки, сначала, отпаяв один конец С3, настраивают генератор с поисковой катушкой на нужную частоту. Для этого вместо С2 временно ставят переменный трёхсекционный конденсатор (12...495пФ)х3 и ведут поиск сигнала на вещательный приёмник, включенный на длинноволновый диапазон. А найдя, "выводят" его на частоту 200 кГц. Впрочем, это не обязательно, можно оставить частоту 150 или, скажем, 250 кГц. Определив величину ёмкости, вместо переменного ставят постоянный конденсатор. Запаяв С3 на место, резистором R1 настраивают на ту же частоту перестраиваемый генератор. Настройку определяют по нулевым биениям в наушниках.

После 10...15-минутного прогрева устройства, приближают поисковую катушку к земле на расстояние, на котором будет вестись поиск, и настраивают на нулевые биения. При поиске выдерживают одинаковое расстояние рамки от земли. Появление звука в телефонах говорит о наличии металлического предмета вблизи катушки. Чем он ближе, тем больше изменяется индуктивность поисковой катушки и, как следствие, тон звукового сигнала.

Металлоискатель на микросхеме

C помощью этого компактного и несложного прибора можно обнаружить рублевую монету на глубине до 10 см, а железное ведро или крышку люка на глубине до 0,5 метра. Прибор основан на принципе изменения частоты LC-генератора с объемной катушкой. Есть два генератора, - поисковый, частота которого задается индуктивностью объемной катушки и емкостью контурного конденсатора и опорный генератор с кварцевой стабилизацией частоты. Сигналы генераторов поступают на смеситель и с выхода смесителя на динамик. Перед началом работы переменным конденсатором настраивают контур поискового генератора на частоту, очень близкую к частоте опорного генератора. В процессе данной настройки в динамике сначала появляется звуковой сигнал высокого тона. Затем, продолжая настройку переменным конденсатором, добиваются нулевых пульсаций (очень низкочастотное звучание, напоминающее потрескивание). При приближении поисковой катушки к металлическому объекту её индуктивность изменяется. Соответственно изменяется и частота генерации поискового генератора. В результате этого тон звучания резко возрастает (сначала потрескивания становятся чаще, а потом переходят в свист).

Принципиальная схема показана на рис.3.


Рис.3

В основе - одна микросхема типа К561ЛА7 (четыре логических элемента 2И-НЕ). На элементе D1.1 выполнен опорный генератор. Частота определяется частотой резонанса кварцевого резонатора Q1. Здесь используется кварцевый (или керамический, точно не скажу) резонатор от пульта дистанционного управления типа RC-6. Там бывают резонаторы на 455 кГц, 465 кГц и 470 кГц. Подойдет любой резонатор в пределах частоты от 400 до 500 кГц, так что можно попробовать и резонаторы от связной аппаратуры на 500 кГц. В принципе, схему генератора опорной частоты можно сделать и на RC или LC компонентах, но стабильность будет низкой и металлоискатель будет требовать постоянной поднастройки во время работы.

Резистор R1 является элементом отрицательной обратной связи и переводит элемент D1.1 в линейный режим усилителя, что необходимо для появления генерации. Через конденсатор СЗ импульсы, имеющие параболическую форму, поступают на смеситель, выполненный на элементе D1.2. Резисторы R2 и R3 образуют делитель напряжения, устанавливающий на выводе 5 элемента D1.2 напряжение равное половине напряжения питания. Это нужно потому что параболическое напряжение на выходе D1.1 имеет небольшую амплитуду, - ниже порогов логических уровней, а наличие делителя на входе D1.2 добавляет постоянную составляющую к этому напряжению.

Поисковый генератор выполнен на элементе D1.3. В линейный режим элемент переведен с помощью резистора R6, включенного между его входом и выходом. Частота генерации определяется контуром L1-C4-C5. Плавно её настраивать можно переменным конденсатором С5, а средняя частота (при среднем положении ротора конденсатора С5) должна быть равна 455 кГц, то есть частоте опорного генератора. Выходное напряжение тоже имеет параболическую форму и по уровню меньше логического уровня. Далее переменное напряжение с выхода поискового генератора поступает на усилитель на элементе D1.4, который в линейный усилительный режим переведен отрицательной обратной связью с помощью резистора R5, включенного между его входом и выходом. Далее напряжение с частотой поискового генератора поступает на другой вход смесителя на элементе D1.2. На выходе этого элемента будет разность частот этих переменных напряжений. В идеальном случае, если эти частоты абсолютно одинаковы, на выходе D1.2 будет либо логическая единица, либо логический ноль постоянно. Но частоты равными не будут, даже при точной настройке переменным конденсатором будет какое-то различие. Поэтому на выходе D1.2 при точной настройки будет переменное напряжение частотой в несколько герц. Динамик В1 при этом потрескивает. С приближением поисковой катушки L1 к металлическому предмету индуктивность L1 изменяется, что неизбежно приводит к изменению частоты генерации поискового генератора. Соответственно и разность между частотами поискового и опорного генератора увеличивается. Треск в динамике становится быстрее и переходит в тональное звучание и чем ближе

к металлическому предмету тем выше тон звука.

Конструкция поисковой катушки может быть различной. Здесь использована была катушка намотанная на куске полиэтиленовой сантехнической трубы диаметром 50 мм. Отрезано колечко шириной 10 мм. Катушка содержит 70 витков провода ПЭВ 0,12. Можно сделать катушку большего диаметра с меньшим числом витков.

Конденсатор С5 - переменный конденсатор от карманного супергетеродинного приемника с AM диапазонами. Обе его секции (по 9-270 пф) включены параллельно. Можно использовать и другой конденсатор аналогичного типа.

В качестве динамика В2 используется миниатюрный динамик от телефонного аппарата. Можно использовать практически любой динамик небольшой мощности с сопротивлением катушки от 1000 до 8 Ом. Но следует учесть что при сопротивлении катушки ниже 25-30 Ом будет наблюдаться очень заметное снижение громкости звучания. Можно использовать и пьезоэлектрический звукоизлучатель, в этом случае ключ на VT1 нужно убрать, а «пъезодинамик» подключить непосредственно между выходом элемента D1.2 и плюсом или минусом питания (выбрать как будет лучше).

На рис.4 показана печатная плата металлоискателя.


Рис.4

В процессе налаживания сначала проверяют работу кварцевого генератора, а потом поискового. Вращая ротор С5 находят положение с писком, далее медленно поворачивают до снижения тона и до нулевых биений. Если не получается или нулевые биения у самого края перестройки конденсатора нужно подкорректировать число витков L1, емкость С4.

Металлоискатель - приставка

Приставка - металлоискатель к мультиметру типа DT-832 (или аналогичного), конструкция которого представляет собой высококачественный генератор с объёмным контуром. Его можно использовать в качестве достаточно чувствительного металлоискателя.

Принципиальная схема приставки показана на рис.5.


Рис.5

Его задача в преобразовании степени воздействия на контур L1-С2 металлического предмета в постоянное напряжение на конденсаторе C3. Это напряжение изменяется мультиметром и по его показаниям определяется наличие металлического предмета.

Основа приставки ВЧ генератор на транзисторе VT1. Величина ПОС, приводящей к запуску генератора, зависит от сопротивления резистора R1 (это резистор подстороечный). При помощи регулировки этого резистора генератор устанавливается в такой режим, когда он очень сильно зависит от параметров окружающей контур среды. А это приводит к изменению глубины возбуждения генератора от изменения параметров окружающей контур среды, что, в свою очередь, приводит к изменению тока, потребляемого генератором. Что, по закону Ома, приводит к изменению напряжения на генераторе, которое изменяется мультиметром.

К сожалению, такой способ не позволяет различать цветные и чёрные металлы.

Питается приставка от того же источника, что и мультиметр (для её подключения нужно припаять к колодки батареи два проводника разного цвета, которые выводить через щель между корпусом мультиметра и крышкой, либо установить на корпусе малогабаритный трехпроходной разъём). Измеряемое напряжение подается с точки соединения резисторов R1 и R2 на вход для измерения постоянного напряжения.

Контурная катушка имеет диаметр около 120 мм. Каркасом катушки служит круглый бокс для десяти компакт-дисков. Обмотка состоит из 250 витков провода диаметром около 0.23 мм, с отводом от 150-го (считая от коллектора VT1). Обмотку нужно уложить виток к витку, а затем, закрепить при помощи скотч - ленты. Катушка закреплена посредине на круглом корпусе, роль которого выполняет круглый пластмассовый пенал для карандашей. В этом пенале расположены все детали генератора. С мультиметром приставка связана трехпроходным экранированным кабелем.

Для обеспечения стабильности работы построечный резистор R1 желательно должен быть многооборотным. Конденсаторы должны быть как можно более стабильными, использовать электролитические на месте C3 и C4 не рекомендуется из-за их нестабильности. Транзистор, желательно выбрать с коэффициентом передачи не ниже 100. Транзистор может быть любой кремниевый общего применения, но удовлетворяющий этому требованию.

Налаживание состоит в следующем. Установите R1 в положение максимального сопротивления. Затем уменьшайте медленно сопротивление резистора и следите за показаниями прибора (имеются в виду абсолютные показания, а не по модулю, поскольку мультиметр будет показывать как отрицательные, так и положительные значения напряжения). Напряжение должно постепенно увеличиваться, а затем начать падать. С этого момента внимательно! Продолжая уменьшать сопротивление R1, найдите момент, когда показания прибора снова начнут расти. Затем, при дальнейшем уменьшении R1 они опять начнут падать. Теперь, вернитесь назад и установите R1 примерно в среднее положение между моментом, с которого показания растут, и с которого они начинают падать. Это и будет точка максимальной чувствительности прибора.

В процессе эксплуатации эту калибровку нужно периодически повторять, так как она будет сбиваться от понижения напряжения источника питания от его разряда.

Получить значительно большую чувствительность и стабильность можно, если питать приставку от отдельного стабилизированного источника постоянного тока напряжением 6-7 В (от отдельной аналогичной батареи, но через стабилизатор). Использовать для питания приставки сетевой источник нежелательно, так как через него проникают различные сетевые помехи и наводки, которые, в общем, снижают чувствительность.

Если поэкспериментировать с числом витков катушки, положением отвода и ёмкостями конденсаторов C1 и C2, можно достигнуть значительной чувствительности. Параметры этих настроек сильно зависят от параметров используемого транзистора. Налаживая прибор, держитесь подальше от различных металлических предметов, типа батарей, водопроводных труб, выключите приборы, могущие создавать помехи (персональный компьютер, например).

Схема металлоискателя на основе сравнении разности частот

Металлоискатель, схема которого представлена на рис.6, работает по принципу BFO (Beat Frequency Oscillation) и основан на сравнении разности частот между образцовым и поисковым LC генератором.


Рис.6

Измеряемым параметром является частота LC-генератора, включающего катушку поисковой головки. В зависимости от того, объект из какого металла (черный / цветной) находится возле поисковой головки - частота поискового контура понижается или соответственно повышается. Частота сравнивается с эталонной частотой опорного генератора и полученная разностная частота биений выводится на звуковую индикацию.

Катушка L1 диаметром около 170 мм и содержит 40 витков провода ПЭЛ-0,4. Экран катушки намотан из фольги. Начало и конец экрана не должны касаться друг друга, поэтому между ними оставляют зазор в несколько миллиметров. Экран катушки припаян к общему проводу схемы. Для настройки металлоискателя используются переменные сопротивления, где:

RP1 - тонкая настройка,

RP2 - грубая настройка.

Курагин П.

Спектр применения дынного устройства очень широк в быту, от поиска клада и реликвий до нахождения в стене проводов и арматур. Заводские решения достаточно дорогостоящие, а для хозяйственных целей достаточно самодельного.

Несмотря на свою простоту данный металлодетектор обладает достаточно хорошими характеристиками:

  • Малое количество используемых деталей, а следовательно дешевый и прост в изготовлении;
  • Способен обнаружить крупные предметы на глубине до 60 см, пяти рублевую монету на глубине до 25 см, а копейку на глубине 15 см;

Принцип работы данного металлоискателя основан на изменении частоты в измерительном генераторе под воздействием металла.

Принцип работы металлоискателя.

Элемент DD1.2 используется как измерительный генератор. Катушка L1 является датчиком. При попадании металла в зону действия катушку ее индуктивность меняется, это приводит к изменению частоты автогенератора. Элементы C1,C2, C3,L1 определяют начальную частоту автогенератора, конденсатором C1 осуществляется ее регулировка в пределах 465 кГц.

Элемент DD1.1 выполняет роль образцового генератора, стабилизированного пьезофильтром ZQ1.

Затем сигналы с этих элементов попадают на DD1.3 и смешиваются. Цепочка R3, C5 выполняют роль фильтра, он гасит сигнал высокочастотных импульсов и пропускает низкочастотные. Полевой транзистор VT2 выполняет роль усилителя. Резистор R6 служит для регулировки громкости.

Питается данное устройство через стабилизатор основанный на стабилитроне VD1 и транзисторе VT1. Конденсатор C4, C6 выполняют роль фильтра по питанию. Напряжение питания схемы от 5 до 9 В.

Используемые детали

Конденсатор C1 КП-180, его можно взять с любого малогабаритного радиоприемника. Конденсаторы C2и С3 М47, М75 или аналогичные с малым ТКЕ, С4 и С5 серии К10, С6 серии К53-1 на 16В.

Резистор R6 серии СП3-3бм, R5 типа СП3-19а

Пьезофильтр ZQ1 из серии ФП1П-61 или аналогичный с тремя ножками. Его можно найти в любом супергетеродинном радиоприемнике.

Сборка и настройка металлодетектора

Устройство собирается на одностороннем стеклотекстолите размерами 75х40 мм. Плату следует располагать как можно ближе к катушке, экранирование платы не обязательно.

Катушка L1 наматывается на оправке диаметром 20 см. и содержит 30 витков медным проводом ПЭЛ или ПЭВ диаметром 1,2 мм. ее индуктивность примерно равна 480 мкГн. Далее катушка обматывается изолентой или любым другим подходящим диэлектрическим материалом. После этого катушку следует обмотать фольгой типа ДПРХМ 0,1х30 либо аналогичной из алюминия или меди. Место где выходят выводы катушки обматывать фольгой не нужно, это расстояние должно составлять примерно 10мм. как показано на рисунке ниже.

Настройка металлоискателя

Подаем на плату напряжение 8,4В. при наличии осциллографа следует проверить наличие сигнала на выходе автогенератора. Затем при отключенных наушниках проверяем потребляемый ток, он должен составлять 4,8 мА, этого можно добиться путем подбора резистора R4. Далее подстройкой конденсатора С1 следует добиться сигнала разностной частоты (100…3000Гц) на резисторе R5, как паказано на рисунке ниже.

Подключаем наушники и резистором R5 добиваемся меандра на стоке транзистора VT2, как показано на рисунке выше.

Окончательная настройка металлодетектора производится конденсатором С1 при отсутствии металла в радиусе 1 м. Путем подстроки конденсатора С1 можно добиться нулевых биений, при этом металлоискатель будет издавать звук при приближении металла. Однако для большей чувствительности рекомендуется на слух добиться биений в диапазоне 100…500Гц. в таком режиме изменение частоты при приближении к металлу более заметно.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Список используемой литературы: Шелестов И.П. «Радиолюбителям полезные схемы»

ЛУЧШИЙ МЕТАЛЛОИСКАТЕЛЬ

Почему именно Volksturm был назван лучшим металлоискателем? Главное - схема реально простая и реально рабочая. Из множества схем металлоискателей, которые я лично делал, именно здесь всё просто, глубинобойно и надёжно! Тем более при своей простоте, в металлодетекторе есть хорошая схема дискриминации - определение железо или цветной металл находится в земле. Сборка металлоискателя заключается в безошибочной пайке платы и настройке катушек в резонанс и в ноль на выходе входного каскада на LF353. Ничего тут суперсложного нет, было бы желание и мозги. Смотрим конструктивное исполнение металлоискателя и новую усовершенствованную схему Volksturm с описанием.

Так как по ходу сборки возникают вопросы, чтоб сэкономить ваше время и не заставлять перелистывать сотни страниц форума, здесь приведены ответы на 10 самых популярных вопросов. Статья в процессе написания, так что некоторые пункты будут дополнены позже.

1. Принцип работы и обнаружения целей этого металлоискателя?
2. Как проверить Работает ли плата металлоискателя?
3. Какой резонанс выбрать?
4. Какие конденсаторы лучше?
5. Как настроить резонанс?
6. Как сводить катушки в ноль?
7. Какой провод для катушек лучше?
8. Какие детали и чем можно заменить?
9. От чего зависит глубина поиска целей?
10. Питание металлоискателя Volksturm?

Принцип работы металлоискателя Volksturm

Постараюсь в двух словах о принципе работы: передача,прием и баланс индукции. В поисковом датчике металлоискателя устанавливают 2 катушки - передающую и приемную. Присутствие металла изменяет индуктивную связь между ними (в том числе и фазу), что влияет на принимаемый сигнал, который затем обрабатывается блоком индикации. Между первой и второй микросхемой стоит коммутатор управляемый импульсами генератора сдвинутого по фазе относительно передающего канала (т.е. когда передатчик работает, приемник отключен и наоборот если приемник включен передатчик отдыхает, а приемник спокойно ловит отраженный сигнал в этой паузе). Итак, вы включили металлоискатель и он пищит. Отлично, если пищит - значит многие узлы работают. Давай разберёмся почему именно он пищит. Генератор на у6Б постоянно генерирует тональный сигнал. Далее он поступает на усилитель на двух транзисторах, но унч не откроется (не пропустит тон) пока напряжение на выходе у2Б (7-й вывод) не разрешит ему этого. Данное напряжение выставляется изменением режима с помощью этого самого резистора трэш. Им надо выставить такое напряжение, чтоб унч почти открылся и пропустил сигнал с генератора. И входные пару милливольт с катушки металлоискателя пройдя усилительные каскады, превысят этот порог и он откроется окончательно и динамик запищит. Теперь проследим прохождение сигнала, точнее сигнала отклика. На первом каскаде (1-у1а) будет пару милливольт, можно до 50. На втором каскаде (7-у1Б) это отклонение увеличится, на третьем(1-у2А) будет уже пару вольт. Но без отклика везде на выходах по нулям.

Как проверить работает ли плата металлоискателя

Вообще усилитель и ключ (CD 4066) проверяется пальцем на входной контакт RX при максимальном сопротивлении сенс и максимальным фоном на динамике. Если изменение фона есть при нажатии пальцем на секунду, то ключ и операционники работают, далее подключаем катушки RX с конденсатором контура параллельно, конденсатор на катушке TX последовательно, ложим одну катушку на другую и начинаем сводить в 0 по минимальному показанию переменного тока на первой ноге усилителя U1A. Далее берем что-нибудь большое и железное и проверяем есть в динамике реакция на металл или нет. Проверим напряжение на у2Б (7-й вывод) оно должно регулятором трэш, меняться +-пару вольт. Если нет - проблема в данном каскаде ОУ. Для начала проверки платы отключаем катушки и включаем питание.

1. Должен идти звук при положении регулятора сенс на максимальное сопротивление, коснёмся пальцем на РХ - если есть реакция, все операционники работают, если нет - проверяем пальцем начиная с u2 и меняем (обследуем обвязку) нерабочего ОУ.

2. Работа генератора проверяется программой частотомер. Штекер от наушников припаять к 12 выводу CD4013 (561ТМ2) предусмотрительно выпаяв р23 (чтоб звуковую карту не спалить). В звуковой плате использовать In-lane. Смотрим частоту генерации, ее стабильность на 8192 гц. Если она сильно смещена, то надо выпаивать конденсатор с9, если и после она не четко выделена и/или много частотных всплесков рядом - заменяем кварц.

3. Проверили усилители и генератор. Если все исправно, но все равно не работает - меняем ключ (CD 4066).

Какой резонанс катушек выбрать

При подключении катушки в последовательный резонанс,увеличивается ток в катушке и общее потребление схемы. Увеличивается расстояние обнаружения цели, но это только на столе. На реальном грунте, земля будет чувствоваться тем сильнее, чем больше ток накачки в катушке. Лучше включение параллельного резонанса, а поднимать чутье входными каскадами. Да и батареек хватит намного дольше. Не смотря на то, что последовательный резонанс применяется во всех фирменных дорогих металодетекторах, в Штурме нужен именно параллельный. В импортных, дорогих приборах, хорошая схематика отстройки от земли, поэтому в этих приборах можно позволить последовательный.

Какие конденсаторы лучше установить в схему металлоискателя

Тип подключаемого к катушке конденсатора не при чём, а если экспериментально поменяли два и увидели что с одним из них резонанс лучше, то просто один из якобы 0,1 мкФ реально имеет 0,098 мкФ, а другой 0,11. Вот и разница между ними по резонансу получается. Я использовал советские К73-17 и зелёные импортные подушки.

Как настроить резонанс катушек металлоискателя

Катушка, как самый лучший вариант, получается из штукатурных терок, склеенных эпоксидной смолой с торцов до нужного вам размера. Причем, центральная ее часть с куском ручки этой самой терки, которая обрабатывается до одного широкого ушка. На штанге же, наоборот, вилка из двух ушек крепления. Такое решение позволяет решить проблему деформирования катушки, при затягивании пластикового болта. Пазы для обмоток делают обычным выжигателем, затем установка ноля и заливка. От холодного конца ТХ, оставим 50 см. провода, который изначально не заливать, а свить из него маленькую катушечку (диаметром 3 см.) и разместить ее внутри RX, перемещая и деформируя ее в небольших пределах, можно добиться точного ноля, но делать это лучше на улице, размещая катушку у земли (как при поиске) при отключенном GEBе, если он есть, затем окончательно залить смолой. Тогда отстройка от земли, работает более- менее сносно (исключение сильно минерализованный грунт). Такая катушка получается легкой, прочной, мало подверженной термодеформации, а обработанная и окрашенная очень симпатичная. И еще одно наблюдение: если металлоискатель собран с отстройкой от грунта (GEB) и при центральном расположении движка резистора выставить ноль очень маленькой шайбой, диапазон регулировки GEBа +- 80-100 мВ. Если установить ноль большим предметом- монета 10-50 коп. диапазон регулировки увеличивается до +- 500-600 мВ. За напряжением в процессе настройки резонанса не гонитесь - у меня при 12в питания около 40В при последовательном резонансе. Чтоб появилась дискриминация конденсаторы в катушках включаем параллельно (последовательное включение нужно только на этапе подбора кондеров для резонанса) - на черные металлы будет протяжный звук, цветные - короткий.

Или ещё проще. Подключаем катушки по очереди к передающему ТХ выходу. Настраиваем в резонанс одну, а настроив её - другую. Пошагово: Подключили, параллельно катушке ткнули мультиметром на пределе переменные вольты, так-же параллельно катушке припаяли конденсатор 0.07-0.08 мкф, смотрим показания. Допустим 4 В - очень слабо, не в резонансе с частотой. Ткнули параллельно первому конденсатору второй небольшой ёмкости - 0.01 мкф (0.07+0.01=0.08). Смотрим - уже показал вольтметр 7 В. Отлично, увеличим ещё ёмкость, подключим на 0.02 мкФ - смотрим на вольтметр, а там 20 В. Великолепно, едем дальше - ещё докинем пару тысяч пик ёмкости. Ага. Уже начало падать, откатим назад. И так добиться максимальных показаний вольтметра на катушке металлоискателя. Затем аналогично с другой (приёмной) катушкой. Настроить на максимум и подключить обратно к приёмному гнезду.

Как сводить катушки металлоискателя в ноль

Для настройки нуля подключаем тестер на первую ногу LF353 и понемногу начинаем сжимать, растягивать катушку. После залива из эпоксидки - нолик точно убежит. Поэтому надо заливать не всю катушку, а оставить места для регулировки, и после высыхания доводить до нуля и заливать окончательно. Взять кусок шпагата и половину катушки обвязать одним витком к середине (к центральной части,месту соединения двух катушек) вставить в петлю шпагата кусочек палочки после чего ее крутить (натягивать шпагат) - катушка будет сжиматься, поймав нолик шпагат пропитать клеем, после почти полного высыхания опять подправить нолик повернув палочку еще чуть-чуть и залить шпагат окончательно. Или проще: Передающая закреплена в пластмассе неподвижно, а приёмную накладываем на первую на 1 см, типа как свадебные кольца. На первом выводе U1A будет писк 8 кГц - можно контролировать вольтметром переменного тока, но лучше просто высокоомными наушниками. Так вот приёмную катушку металоискателя надо то надвигать, то сдвигать с передающей до тех пор, пока на выходе ОУ писк не стихнет до минимума (или показания вольтметра не упадут до нескольких милливольт). Всё, катушка сведена, фиксируем.

Какой провод для поисковых катушек лучше

Провод для намотки катушек не имеет значения. От 0.3 до 0.8 пойдёт любой, всё равно придётся немного подбирать ёмкость для настройки контуров в резонанс и на частоту 8.192 кГц. Конечно и более тонкий провод вполне подходит, просто чем он толще, тем добротность и, как следствие чутьё - лучше. Но если намотать 1 мм - будет довольно тяжеловато таскать. На листе бумаги рисуем прямоугольник 15 на 23 см. От левого верхнего и нижнего угла откладываем по 2,5 см, и соединяем их линией. С правым верхним и нижними углами проделываем тоже самое, но откладываем по 3 см. По средине нижней части ставим точку и по точке слева и справа на расстоянии 1 см. Берем фанеру, накладываем этот эскиз и вбиваем гвоздики во все точки указанные. Берем провод ПЭВ 0,3 и мотаем 80 витков провода. Но честно говоря без разницы сколько витков. Всё равно частоту 8 кГц будем выставлять в резонанс конденсатором. Сколько намотали - столько и намотали. Я мотал 80 витков и конденсатор 0.1 мкф, если намотаете допустим 50 - ёмкость соответственно где-то 0.13 мкф поставить придётся. Далее, не снимая с шаблона обматываем катушку толстой ниткой - типа как обматывают жгуты проводов. После покрываем катушку лаком. Когда высохнет, снимаем катушку с шаблона. Затем идёт обмотка катушки изоляцией - фум лента или изолента. Далее - обмотка приёмной катушки фольгой, можно взять ленту из электролитических конденсаторов. TX катушку можно не экранировать. Не забудьте оставить РАЗРЫВ в экране 10 мм, по середине катушки. Дальше идёт обмотка фольги луженым проводом. Этот провод вместе с начальным контактом катушки у нас будет массой. И наконец обмотка катушки изолентой. Индуктивность катушек около 3,5мГ. Емкость получается около 0,1мкф. Что касается заливки катушки эпоксидкой, то я не заливал её вообще. Просто туго замотал изолентой. И ничего, два сезона отходил с этим металлоискателем без ухода настроек. Обратите внимание на влагоизоляцию схемы и поисковых катушек, ведь придётся по мокрой траве косить. Всё должно быть герметично - иначе попадёт влага и настройка поплывёт. Ухудшится чувствительность.

Какие детали и чем можно заменить

Транзисторы :
BC546 - 3шт или КТ315.
BC556 - 1шт или КТ361
Операционники :

LF353 - 1шт или меняйте на более распространенную TL072.
LM358N - 2шт
Цифровые микросхемы :
CD4011 - 1шт
CD4066 - 1шт
CD4013 - 1шт
Резисторы постоянные , мощностью 0,125-0,25 Вт:
5,6К - 1шт
430К - 1шт
22К - 3шт
10К - 1шт
390К - 1шт
1К - 2шт
1,5К - 1шт
100К - 8шт
220К - 1шт
130К - 2шт
56К - 1шт
8,2К - 1шт
Резисторы переменные :
100К - 1шт
330К - 1шт
Конденсаторы неполярные :
1нФ - 1шт
22нФ - 3шт (22000пФ = 22нФ = 0.022мкФ)
220нФ - 1шт
1мкФ - 2шт
47нФ - 1шт
10нФ - 1шт
Конденсаторы электролитические :
220мкФ на 16В - 2шт

Динамик миниатюрный.
Кварцевый резонатор на 32768 Гц.
Два сверхярких светодиода разного цвета.

Если вы не можете достать импортные микросхемы, вот отечественные аналоги: CD 4066 - К561КТ3, CD4013 - 561ТМ2, CD4011 - 561ЛА7, LM358N - КР1040УД1. У микросхемы LF353 - прямого аналога нет, но смело ставим LM358N или лучше TL072, TL062. Совсем не обязательно ставить операционный усилитель именно - LF353, я просто поднял усиление на U1A заменив резистор в цепи отрицательной обратной связи 390 кОм на 1 мОм - чувствительность значительно возросла на процентов 50, правда после этой замены ушёл ноль, пришлось на катушку в определённом месте приклеить скотчем кусочек алюминиевой пластинки. Советские три копейки чувствует по воздуху на расстоянии 25 сантиметров и это при питании 6 вольт, потребляемый ток без индикации - 10 мА. И не забудь про панельки - удобство и простота настройки значительно повысятся. Транзисторы КТ814, Кт815 - в передающую часть металлоискателя, КТ315 в УНЧ. Транзисторы - 816 и 817 желательно подобрать с одинаковым коэффициентом усиления. Заменимы на любые соответствующей структуры и мощности. В генераторе металлоискателя установлен специальный часовой кварц на частоту 32768 Гц. Это стандарт абсолютно для всех кварцевых резонаторов, которые стоят в любых электронных и электромеханических часах. В том числе и наручных и дешёвых китайских настенных/настольных. Архивы с печатной платой для варианта и для (вариант с ручной отстройкой от земли).

От чего зависит глубина поиска целей

Чем больше диаметр катушки металлоискателя, тем глубже чутьё. А вообще, глубина обнаружения цели данной катушкой, зависит прежде всего от размера самой цели. Но при увеличении диаметра катушки наблюдается уменьшение точности обнаружения объекта и даже иногда потеря мелких целей. Для объектов с монету, этот эффект наблюдается при увеличении размера катушки свыше 40 см. Итого: большая поисковая катушка, имеет большую глубину обнаружения и больший захват, но менее точно обнаруживает цель, чем маленькая. Большая катушка идеальна для поиска глубоких и больших целей, таких как клады и крупные объекты.

По форме катушки делятся на круглые и эллиптичные (прямоугольные). Эллиптичная катушка металлоискателя обладает лучшей избирательностью по сравнению с круглой, потому что ширина магнитного поля у нее меньше и в поле ее действия попадает меньше посторонних объектов. Но круглая имеет большую глубину обнаружения и лучшую чувствительность к цели. Особенно на слабо минерализованных грунтах. Круглая катушка наиболее часто используется при поиске с металлоискателем.

Катушки диаметром меньше 15 см называют маленькими, катушки диаметром 15-30 см называют средними и катушки свыше 30 см - большие. Большая катушка генерирует большее электромагнитное поле, поэтому она имеет большую глубину обнаружения, чем маленькая. Большие катушки генерируют большое электромагнитное поле и соответственно, имеют большую глубину обнаружения и покрытие при поиске. Такие катушки используются для просмотра больших площадей, но при их использовании, может возникнуть проблема на сильно замусоренных площадках потому, что в поле действия больших катушек может попасться сразу несколько целей и металлоискатель среагирует на более крупную цель.

Электромагнитное поле маленькой поисковой катушки тоже маленькое, поэтому с такой катушкой лучше всего искать на территориях сильно замусоренных всякими мелкими металлическими предметами. Маленькая катушка идеальна для обнаружения маленьких объектов, но имеет небольшую площадь покрытия и сравнительно небольшую глубину обнаружения.

Для универсального поиска хорошо подойдут средние катушки. Такой размер поисковой катушки сочетает в себе достаточную глубину поиска и чувствительность к целям с разными размерами. Я делал каждую катушку диаметром примерно 16 см и обе эти катушки укладывал в круглую подставку из-под старого монитора 15". В таком варианте глубина поиска этого металлоискателя будет такая: алюминиевая пластина 50x70 мм - 60 см, гайка М5-5 см, монетка - 30 см, ведро - около метра. Данные значения получены на воздухе, в земле будет на 30% меньше.

Питание металлоискателя

Отдельно схема металлоискателя тянет 15-20 мА, при подключенной катушке + 30-40 мА, итого вместе до 60 мА. Конечно в зависимости от типа применяемого динамика и светодиодов это значение может изменяться. Простейший случай - питание взял 3 (или даже две) последовательно подключенные литий ионные батарейки от мобил на 3,7В и при заряде разряженных аккумуляторов, когда подключаем любой блок питания на 12-13в, ток заряда начинается от 0,8А и падает до 50ма за час и тогда вообще не надо что-то добавлять, хотя ограничительный резистор конечно же не помешает. Как вообще самый простейший вариант - крона на 9В. Но учтите, что металлоискатель съест её за 2 часа. Но для настройки этот вариант питания самое оно. Крона при любых обстоятельствах не выдаст большой ток, который может спалить что-то в плате.

Самодельный металлоискатель

А теперь описание процесса сборки металлодетектора от одного из посетителей. Так как из приборов имею только мультиметр, скачал с инета виртуальную лабораторию Записных О.Л. Собрал адаптер, простенький генератор и прогнал в холостую осциллограф. Вроде показывает какую-то картинку. Далее занялся поиском радиодеталей. Так как печатки в основном выкладывают в формате «lay», скачал «Sprint-Layout50». Выяснил, что такое лазерно-утюжная технология изготовления печатных плат и как их травить. Вытравил плату. К этому времени все микросхемы были найдены. Что не нашел у себя в сарайчике, пришлось покупать. Приступил к пайке перемычек, резисторов, сокетов микросхем, и кварца из китайского будильника на плату. Периодически проверяя сопротивление на шинах питания чтобы не было соплей. Решил для начала собрать цифровую часть прибора, как наиболее легкую. То-есть генератор, делитель и коммутатор. Собрал. Поставил микросхему генератора (К561ЛА7) и делитель (К561ТМ2). Микросхемы б/ушные, выдрал из каких-то плат, обнаруженных в сарайчике. Подал питание 12В контролируя ток потребления по амерметру, 561ТМ2 стала теплой. Заменил 561ТМ2, подал питание - ноль эмоций. Меряю напряжение на ногах генератора - на 1 и 2 ногах 12В. Меняю 561ЛА7. Включаю - на выходе делителя, на 13 ноге есть генерация (наблюдаю на виртуальном осциллографе)! Картинка правда не ахти какая, но за неимением нормального осциллографа - пойдет. Но на 1, 2 и 12 ногах ничего нет. Значит генератор работает, нужно менять ТМ2. Установил третью микросхему делителя - красота на всех выходах есть генерация! Для себя сделал вывод, что выпаивать микросхемы нужно как можно аккуратнее! На этом первый шаг постройки сделан.

Теперь настраиваем плату металлоискателя. Не работал регулятор "SENS" - чувствительность, пришлось выкинуть конденсатор C3 после этого регулировка чувствительности заработала как надо. Не нравился звук возникающий в крайнем левом положении регулятора "THRESH" - порог, избавился от этого заменив резистор R9 цепочкой из последовательно соединённых резистор на 5,6 кОм + конденсатор на 47,0 мкФ (отрицательный вывод конденсатора со стороны транзистора). Пока нет микросхемы LF353 вместо неё поставил LM358, с ней советские три копейки чувствует по воздуху на расстоянии 15 сантиметров.

Поисковую катушку на передачу я включил как последовательный колебательный контур, а на приём как параллельный колебательный контур. Настраивал первой передающую катушку, подключил собранную конструкцию датчика к металлоискателю, осциллограф параллельно катушке и по максимальной амплитуде подобрал конденсаторы. После этого осциллограф подключил на приёмную катушку и по максимальной амплитуде подобрал конденсаторы на RX. Настройка контуров в резонанс занимает, при наличии осциллографа, несколько минут. Обмотки TX и RX у меня содержат по 100 витков провода диаметром 0,4. Начинаем сведение на столе, без корпуса. Просто чтоб было два обруча с проводами. А чтоб убедиться в работоспособности и возможности сведения вообще - разведём катушки друг от дрга на полметра. Тогда ноль будет точно. Затем наложив катушки внахлёст примерно 1см (как свадебные кольца) сдвигать - раздвигать. Точка нуля может быть довольно точная и поймать её сразу нелегко. Но она есть.

Когда, я поднял усиление в RX тракте МД, он начал работать неустойчиво на максимальной чувствительности, это проявлялось в том что после прохождения над целью и её обнаружении выдавался сигнал, но он продолжался и после того когда цели перед поисковой катушкой ни какой уже небыло, это проявлялось в виде прерывистых и колеблющихся звуковых сигналов. При помощи осциллографа была обнаружена и причина этого: при работе динамика и незначительной просадке питающего напряжения уходит "ноль" и схема МД переходит в автоколебательный режим, выйти из которого можно только загрубив порог срабатывания звукового сигнала. Это меня не устраивало поэтому я поставил по питанию КР142ЕН5А + сверх яркий белый светодиод чтобы поднять напряжение на выходе интегрального стабилизатора, стабилизатора на более высокое напряжение у меня небыло. Такой светодиод можно использовать даже для подсветки поисковой катушки. Динамик подключил до стабилизатора, МД после этого стал сразу очень послушный всё начало работать как надо. Думаю Volksturm действительно лучший самодельный металлоискатель!

Недавно была предложенна данная схема доработки, что позволит превратить Volksturm S в Volksturm SS + GEB. Теперь прибор станет обладать хорошим дискриминатором а также селективностью металлов и отстройкой от грунта, прибор паяется на отдельной плате и подключается вместо конденсаторов с5 и с4. Схема доработки и в архиве. Отдельная благодарность за информацию по сборке и настройке металлоискателя всем, кто принимал участие в обсуждении и модернизации схемы, особенно помогли в подготовке материала Электродыч, феска, xxx, slavake, ew2bw, redkii и другие коллеги радиолюбители.

Это обеспечивает, с одной стороны, слабую реакцию на нежелательные сигналы (например, сигналы, возникающие при наличии мокрого песка, мелких кусочков металла и т. д.), а с другой стороны, хорошую чувствительность при поиске скрытых водопроводных труб и трасс центрального отопления, монет и других металлических предметов.

Для реализации и настройки схемы требуется соответствующий навык и опыт, поэтому начинающему любителю-конструктору следует обратиться сначала к более простым схемам и устройствам, описанным в данной книге.

Блок-схема металлоискателя приводится на рис.1. Генератор металлоискателя возбуждает колебания в передающей катушке на частоте около 3 кГц, создавая в ней переменное магнитное поле. Приемная катушка расположена перпендикулярно передающей катушке таким образом, что проходящие через неё магнитные силовые линии создают малую ЭДС. На выходе приемной катушки сигнал либо отсутствует, либо очень мал. Металлический предмет, попадая в поле катушки, изменяет значение индуктивности, и на выходе появляется электрический сигнал, который затем усиливается, выпрямляется и фильтруется. Таким образом, на выходе системы имеем сигнал постоянного напряжения, значение которого слегка возрастает при приближении катушки к металлическому предмету.

Рис.1. Блок-схема металлоискателя:
1 - генератор (3 кГц); 2 - дискриминатор; 3 - катушки металлоискателя; 4 - усилитель высокой частоты; 5 - детектор; 6 - фильтр низких частот; 7 - звуковой генератор; 8 - электронный ключ звукового сигнала; 9 - усилитель выходных сигналов; 10 - громкоговоритель; 11 - схема сравнения; 12 - регулируемое опорное напряжение.

Этот сигнал поступает на один из входов схемы сравнения, где сравнивается с опорным напряжением, которое прикладывается к его второму входу. Уровень опорного напряжения отрегулирован таким образом, что даже небольшое увеличение напряжения сигнала приводит к изменению состояния на выходе схемы сравнения. Это в свою очередь приводит в действие электронный переключатель, в результате чего на выходные усилительные каскады поступает звуковой сигнал, оповещающий оператора о присутствии металлического предмета.

Принципиальная электрическая схема металлоискателя представлена на рис. 2. Передатчик, состоящий из транзистора VT1 и связанных с ним элементов, возбуждает колебания в катушке L1. Сигналы, поступающие на катушку L2, затем усиливаются микросхемой D1 и выпрямляются микросхемой D2, включенной по схеме амплитудного детектора.

Рис.2. Электрическая схема мкталлоискателя. Передатчик показан красным цветом.

Сигнал с детектора поступает на конденсатор С9 и сглаживается фильтром низких частот, который состоит из резисторов R14, R15 и конденсаторов С10 и С11 Затем сигнал поступает на вход схемы сравнения D3, где сравнивается с опорным напряжением, устанавливаемым переменными резисторами RP3 и RP4. Переменный резистор RP4 служит для быстрой и грубой настройки, a RP3 обеспечивает точную регулировку опорного напряжения. Генератор, собранный на транзисторе с одним переходом VT2, работает в непрерывном режиме, однако сигнал, вырабатываемый им, поступит на базу транзистора VT4 только тогда, когда закроется транзистор VТ3, так как, находясь в открытом состоянии, этот транзистор шунтирует выход генератора. При поступлении сигнала на вход микросхемы D3 напряжение на ее выходе уменьшается, закрывается транзистор VТЗ и сигнал от транзистора VТ2 через транзистор VТ4 и регулятор громкости RP5 поступает на выходной каскад и громкоговоритель.

В схеме используются два источника питания, что устраняет возможность возникновения любой обратной связи выхода схемы к ее чувствительному входу. Основная схема питается от батареи напряжением 18В, которое с помощью микросхемы D4 понижается до стабильного напряжения 12В. При этом снижение напряжения батареи во время работы схемы не вызывает изменения настройки. Выходные каскады питаются от отдельного источника питания напряжением 9В. Требования по потреблению мощности довольно низкие, поэтому для питания устройства можно использовать три аккумуляторные батареи. Батарея питания выходного каскада не требует специального выключателя, так как в отсутствие сигнала выходной каскад не потребляет тока.

Металлоискатель - довольно сложное устройство, поэтому сборку схемы следует проводить покаскадно с тщательной проверкой каждого каскада. Схему монтируют на плате, на которой имеются 24 медные полоски по 50 отверстий в каждой с шагом 2,5 мм. Прежде всего в полосках делают 64 разреза, как показано на рис. 3, и высверливают три установочных отверстия.

Рис.3. Фольгированная сторона платы.

Затем на обратной стороне платы устанавливают 20 перемычек, штыри для внешних соединений, а также два штыря для конденсатора С5 (рис. 4). Затем устанавливают конденсаторы С16, С17 и микросхему D4. Эти элементы образуют источник питания с напряжением 12В. Проверка этого каскада осуществляется путем временного подключения батареи напряжением 18В. При этом напряжение на конденсаторе С 16 должно составлять 12±0,5В. После этого проводится монтаж элементов выходного каскада: резисторов R23-R26, конденсаторов С14 и С15 и транзисторов VT4-VT6. Следует учесть, что корпус транзистора VТ6 соединен с его коллектором, поэтому контакт корпуса с соседними элементами и перемычками недопустим. Так как выходной каскад при отсутствии сигнала не потребляет тока, его проверяют временным подсоединением громкоговорителя, переменного резистора RP5 и батареи напряжением 9В.

Рис.4. Расположение элементов на плате.

Затем устанавливают резисторы R20-R22 и транзистор VT2, образующие генератор звуковых сигналов. При подключении двух источников питания в динамике прослушивается звуковой фон, меняющийся с изменением положения ручки регулятора громкости. После этого на плате монтируют резисторы R16-R19, конденсатор С12, транзистор VТЗ и микросхему D3. Работа схемы сравнения проверяется следующим образом. К измерительному входу D3 подключают переменные резисторы RP3 и RP4. Этот вход образуется с помощью двух резисторов сопротивлением 10 кОм, один из которых подключается к положительной шине питания +12В, а другой - к нулевой шине. Вторые выводы резисторов подсоединяют к выводу 2 микросхемы D3. Перемычка от этого вывода служит временной точкой соединения. При грубой настройке (включены обе батареи), которая осуществляется переменным резистором RP4, в определенном его положении происходит срыв звукового сигнала, в то время как при точной настройке переменным резистором RP3 должно осуществляться плавное изменение сигнала вблизи этого положения. При выполнении этих условий приступают к установке резисторов R6-R15, конденсаторов С6-С11, диода VD3 и микросхем D1 и D2.

Включив источник питания, сначала проверяют наличие сигнала на выходе микросхемы D1 (вывод 6). Он не должен превышать половины значения напряжения источника питания (приблизительно 6 В). Напряжение на конденсаторе С9 не должно отличаться от напряжения выходного сигнала этой микросхемы, хотя наводки от сети переменного тока могут вызвать небольшое увеличение этого напряжения. Касание пальцем входа микросхемы (основания конденсатора С6) вызывает увеличение напряжения из-за повышения уровня шумов. Если регуляторы настройки находятся в положении, при котором звуковой сигнал отсутствует, касание пальцем конденсатора С6 приводит к появлению и исчезновению этого сигнала. На этом предварительная проверка работоспособности каскадов заканчивается.

Окончательная проверка и настройка металлоискателя проводятся после изготовления катушек индуктивности. После предварительной проверки каскадов схемы на плате устанавливаются остальные элементы за исключением конденсатора С5. Переменный резистор RP2 временно устанавливается в среднее положение. Внутренняя разводка схемы показана на рис.5. Плата крепится к L-образному алюминиевому шасси через пластмассовые шайбы (для устранения возможности короткого замыкания) с помощью трех винтов. Шасси закрепляется в корпусе пульта управления двумя болтами, удерживающими два зажима, предназначенные для крепления корпуса пульта к штанге искателя. Боковая сторона шасси обеспечивает фиксацию источников питания в корпусе. При сборке пульта следует убедиться, что выводы переключателя на обратной стороне переменного резистора RP5 не касаются элементов платы. После высверливания прямоугольного отверстия приклеивается динамик.

Рис.5. Монтажная схема включения узлов металлоискателя:
1 - громкоговоритель; 2 - передающая катушка; 3 - приемная катушка; 4 - 4-жильный экранированный кабель; 5 - питание 9В; 6 -питание 18В

Штанга и соединительные части, образующие держатель головки искателя (рис.6), изготавливаются из пластмассовых трубок диаметром 19 мм. Сама головка искателя представляет собой тарелку диаметром 25 см, изготовленную из прочной пластмассы. Внутренняя ее часть тщательно зачищается наждачной бумагой, что обеспечивает хорошее склеивание с эпоксидной смолой.

Рис.6. Элементы держателя головки металлоискателя

(а) и вид собранного держателя (б) :
1 - ручка велосипедного руля; 2 - пять трубок, согнутых под углом 135°; 3 - три соединителя трубок длиной 5 см; 4 - фиксирующие зажимы для крепления блока управления к штанге; 5 - штанга держателя головки искателя; 6 - Т-образный соединитель; 7 - два трубчатых отрезка длиной 4,5 см; 8 - фиксирующие зажимы, крепящиеся к тарелке и обеспечивающие изменение угла наклона; 9 - пластиковая тарелка диаметром 25 см

Основные характеристики металлоискателей во многом зависят от применяемых катушек, поэтому их изготовление требует особого внимания. Катушки, имеющие одинаковую форму и размеры, наматывают на D-образный контур, который образован из штырей, закрепленных на подходящем куске платы (рис. 7). Каждая катушка состоит из 180 витков эмалированного медного провода диаметром 0,27 мм с отводом от 90-го витка. Прежде чем снять катушки со штырей, их в нескольких местах перевязывают. Затем каждая катушка обматывается прочной нитью, чтобы витки плотно прилегали друг к другу. На этом изготовление передающей катушки заканчивается. Приемная же катушка должна быть снабжена экраном.

Рис. 7. Головка металлоискателя (вид спереди) :
1 - разрыв в экранировке; 2 - передающая катушка; 3 - винты фиксирующих зажимов; 4 - контур тарелки; 5 - кабель, проходящий через просверленное в тарелке отверстие; 6 - приемная катушка Рис. 15.7. Катушка индуктивности:

1 - обмотки; 2 - штыри; 3 - центр окружности диаметром 20 см; 4 - петля для центрального отвода; 5 - концы катушек

Экранирование катушки обеспечивается следующим образом. Сначала она обматывается проволокой, а затем обертывается слоем алюминиевой фольги, которая снова обматывается проволокой. Такая двойная обмотка гарантирует хороший контакт с алюминиевой фольгой. В обмотках проволоки и в фольге должен быть предусмотрен небольшой разрыв или зазор, как показано на рис. 15.8, препятствующий образованию замкнутого витка по окружности катушки.

Изготовленные таким образом катушки закрепляются с помощью зажимов,по краям пластмассовой тарелки и подсоединяются к блоку управления при помощи четырёхжильного экранированного кабеля. Два центральных отвода и экран приемной катушки подсоединяются к нулевой шине через экранирующие провода. Если включить устройство и радиоприемник, расположенный недалеко от катушки, можно услышать высокотональный свист (на частоте металлоискателя), обусловленный наводкой звукового сигнала в радиоприемнике. Это указывает на исправность генератора металлоискателя.

В данном случае неважно, на какой диапазон настроен радиоприемник, поэтому для проверки вместо него можно использовать любой кассетный магнитофон. Место рабочего положения катушек определяется либо по выходному сигналу металлоискателя, который должен быть минимальным, либо по показаниям измерительного прибора (вольтметра), подключенного непосредственно к конденсатору С9.

Второй вариант для подгонки катушек значительно проще. Напряжение на конденсаторе должно составлять приблизительно 6В. После этого внешние части катушек приклеиваются эпоксидной смолой, а внутренние, проходящие через центр, остаются незакрепленными, что позволяет провести окончательную настройку.

Окончательная настройка состоит в установке незакрепленных частей катушек в такое положение, при котором предметы из цветного металла, например монеты, вызывают быстрое увеличение выходного сигнала, а стальные предметы - его незначительное уменьшение. Если требуемый результат не достигается, необходимо поменять местами концы одной из катушек. Следует помнить, что окончательная настройка или подгонка катушек должна проводиться при отсутствии металлических предметов. После установки и прочного закрепления катушки покрываются слоем эпоксидной смолы, затем на них накладывается стеклоткань и все это герметизируется эпоксидной смолой.

После изготовления головки искателя в схему встраивается конденсатор С5, переменный резистор RP1 устанавливается в среднее положение, а переменный резистор RP2 настраивается на минимум выходного сигнала. При этом, по одну сторону среднего положения переменный резистор RP1 обеспечивает распознавание стальных предметов, а по другую сторону - предметов из цветного металла. Следует иметь в виду, что при каждом изменении номинального значения сопротивления переменного резистора RP1 необходимо проводить повторную настройку устройства.

На практике металлоискатель представляет собой легкое, хорошо сбалансированное, чувствительное устройство. В течение первых нескольких минут после включения устройства может быть разбаланс нулевого уровня, однако через некоторое время он исчезает или становится незначительным.

Элементы металлоискателя:

Резисторы:

R1,R6, R7, R8 100 кОм
- R2, R3, R22, R23 100 Ом
- R4, R5 6,8 кОм
- R9, R11, R21, R25 10 кОм
- R10 220 кОм
- R14 15 кОм
- R15, R19 68кОм
- R16 8,2 кОм
- R17 18кОм
- R18 3,9 МОм
- R12, R13 47кОм
- R24 4,7 кОм
- R20 33 кОм
- R26 1,8 кОм

Переменные резисторы:

RP1, RP4 10кОм(линейные)
- RP2 10 кОм (микроминиатюрный, с горизонтальной установкой)
- RP3 100 кОм (линейный)
- RP5 10 кОм (совмещённый с переключателем)

Конденсаторы:

С1 100 мкФ, 16 В (электролитический)
- С2, С5, С14 0,01 мкФ
- СЗ, С4 0,22 мкФ
- С6, C13 0,1 мкФ
- С7, С8, С12 1мкФ
- С9 47 мкФ, 16В
- С10 2,2 мкФ, 35В
- С11 0,47 мкФ, 35В
- С15, С16 220 мкФ, 16В (электролитический)
- С17 470 мкФ, 25В (электролитический)

Транзисторы:

VT1, VТ5 BC214L (КТ3107Б, КТ3107И)
- VТ2 TIS43 однопереходный (КТ117)
- VТ3, VТ4 BC184L (КТ3102Д)
- VТ6 BFY51 (КТ630Д)

Диоды:

VDl, VD2, VD3 1N914 (КД521А)

Микросхемы:

D1, D2,D3 САЗ 140 (К1109УД1)
- D4 uA78L12AWC стабилизатор напряжения +12В, 100 мА (К142ЕН1, К142ЕН2)

Плата:

24 медные полоски с 50 отверстиями, шаг 2,5 мм; штыри;

Динамик с сопротивлением катушки 8 Ом;

Эмалированный медный провод диаметром 0,27 мм;
- Ручки управления - 4 шт.;
- 4-х жильный изолированный кабель -2 м;
- Ручка от велосипедного руля.