Украшения. Аксессуары. Дизайн ногтей. Цвета. Нанесение. Ногти

Переход твердого тела в газообразное состояние. Кипение жидкостей

  1. Твердое состояние
  2. Жидкое состояние
  3. Газообразное состояние
  4. Изменение состояния вещества

Химия изучает вещество. Что же такое "вещество"? Вещество - это все то, что имеет массу и объем. Вещество может находиться в одном из трех агрегатных состояний: твердом, жидком, газообразном .

1. Твердое состояние

Частицы (молекулы) в твердом теле объединены в жесткую повторяющуюся конструкцию - кристаллическую решетку . Частицы в кристаллической решетке совершают небольшие колебания около центров равновесия. Твердое тело имеет форму и объем .

2. Жидкое состояние

В отличие от твердых тел, жидкость не имеет определенной формы, но имеет объем. Это объясняется тем, что в жидкостях частицы находятся на большем расстоянии друг от друга, чем в твердых телах и двигаются активнее.

Поскольку частицы в жидкостях располагаются менее плотно, чем в твердых телах, то они не могут образовать кристаллическую решетку, следовательно жидкости не имеют определенной формы.

3. Газообразное состояние

В газе частицы находятся еще на больших расстояниях, чем в жидкостях. Мало того - частицы постоянно находятся в хаотическом (беспорядочном) движении. Поэтому газы стремятся равномерно заполнить, предоставленный им, объем (отсюда следует тот факт, что у газов нет определенной формы).

4. Изменение состояния вещества

Возьмем банальный пример и проследим за процессом изменения состояния воды.

В твердом состоянии вода - это лед. Температура льда меньше 0 о С. При нагревании лед начинает плавиться и превращаться в воду. Это объясняется тем, что частицы льда, находящиеся в кристаллической решетке, при нагревании начинают двигаться, вследствие этого решетка разрушается. Температура, при которой происходит плавление вещества, называется "точкой плавления" вещества. Точка плавления воды равна 0 о С.

Следует заметить, что до тех пор пока лед полностью не расплавится, температура льда будет 0 о С.

Во время фазовых изменений вещества температура остается постоянной

После того, как лед полностью превратился в воду, мы продолжим нагрев. Температура воды будет повышаться, а движение частиц под действием тепла все более ускоряться. Это происходит до тех пор, пока вода не достигнет следующей своей точки изменения состояния - кипения .

Этот момент наступает когда связи частиц воды полностью разрываются и их движение становится свободным: вода превращается в пар.

Процесс перехода вещества из жидкого состояния в газообразное называется кипением

Температура, при которой жидкость закипает, называют "точкой кипения" .

Следует обратить внимание, что температура кипения зависит от давления. При нормальном давлении (760 мм. рт. ст.) температура кипения воды составляет 100 о С.

По аналогии с плавлением: пока вода полностью не превратится в пар - температура будет постоянной.

Подведем итог. В результате нагревания мы получили разные фазовые состояния воды:

Лед → вода → пар или Н 2 0 (т) → Н 2 0 (ж) → Н 2 0 (г)

Что же произойдет, если мы начнем охлаждать водяной пар? Не надо быть "семи пядей во лбу", чтобы догадаться - пойдет обратный процесс фазовых изменений воды:

Пар → вода → лед

Существуют некоторые вещества, которые из твердого состояния переходят сразу в газообразное, минуя жидкую фазу. Такой процесс называется сублимацией или возгонкой . Так, например, ведет себя "сухой лед" (двуокись азота СО 2). При его нагревании вы не увидите ни капли воды, - "сухой лед" будет как бы испаряться на глазах.

Процесс, обратный сублимации (переход вещества из газа в твердое состояние), называется десублимация .

Любое изменение состояния вещества связано с метаморфозами температуры, давления. Можно одно вещество представить в следующих агрегатных состояниях: твердом, жидком, газообразном.

Отметим, что по мере перехода не наблюдается изменения состава вещества. Переход вещества из жидкого состояния в твердое сопровождается только изменением сил межмолекулярного взаимодействия, расположением молекул. Превращение из одного состояния в другое именуют

Плавление

Данный процесс предполагает превращение в жидкость. Для его осуществления необходима повышенная температура.

Например, можно наблюдать в природе такое состояние вещества. Физика легко объясняет процесс таяния снежинок под действием весенних лучей. Маленькие кристаллики льда, входящие в состав снега, после прогревания воздуха до нулевой отметки начинают разрушаться. Происходит плавление постепенно. Сначала лед поглощает тепловую энергию. По мере изменения температуры происходит полное превращение льда в жидкую воду.

Он сопровождается существенным ростом скорости движения частиц, тепловой энергией, повышением величины внутренней энергии.

После достижения показателя, именуемого происходит разрыв структуры твердого вещества. У молекул появляется большая свобода, они «перескакивают», занимая разные положения. Расплавленное вещество имеет больший запас энергии, чем в твердом состоянии.

Температура отвердевания

Переход вещества из жидкого состояния в твердое осуществляется при определенном значении температуры. Если от тела будет отводиться тепло, то оно застывает (кристаллизуется).

Температуру отвердевания считают одной из важнейших характеристик.

Кристаллизация

Переход вещества из жидкого состояния в твердое положение называют кристаллизацией. При прекращении передачи тепла жидкости наблюдается снижение температуры до определенного значения. Фазовый переход вещества из жидкого состояния в твердое тело в физике называют кристаллизацией. При рассмотрении вещества, не содержащего примесей, температура плавления соответствует показателю кристаллизации.

Оба процесса протекают постепенно. Процесс кристаллизации сопровождается снижением молекул, содержащихся в жидкости. Силы притяжения, благодаря которым частицы удерживаются в строгом порядке, присущие твердым телам, возрастают. После того как частицы приобретут упорядоченное расположение, сформируется кристалл.

Называют физическую форму вещества, представленную в определенном интервале давлений и температур. Оно характеризуется количественными свойствами, которые изменены в выбранных интервалах:

  • способность вещества менять форму и объем;
  • отсутствие (присутствие) дальнего либо ближнего порядка.

Процесс кристаллизации связан с энтропией, свободной энергией, плотностью, иными физическими величинами.

Помимо жидкостей, твердых тел, газообразной формы, выделяют еще одно агрегатное состояние - плазму. В нее могут переходить газы в случае повышения температуры при неизменном давлении.

Рамки между разнообразными состояниями вещества далеко не всегда являются строгими. В физике подтверждено существование аморфных тел, способных сохранять структуру жидкости, имеющей небольшую текучесть. обладают способностью поляризовать электромагнитное излучение, которое через них проходит.

Заключение

Для того чтобы описывать различные состояния в физике, применяют определение термодинамической фазы. Критическими явлениями называют состояния, которые описывают превращение одной фазы в другую. Твердые тела отличаются сохранением на протяжении длительного временного промежутка своего среднего положения. Они будут совершать незначительные колебания (с минимальной амплитудой) около положения равновесия. У кристаллов есть определенная форма, которая при переходе в жидкое состояние будет изменяться. Информация о температурах кипения (плавления) позволяет физикам использовать переходы из одного агрегатного состояния в другое для практических целей.

Любое вещество состоит из молекул, а его физические свойства зависят от того, каким образом упорядочены молекулы и как они взаимодействуют между собой. В обычной жизни мы наблюдаем три агрегатных состояния вещества - твердое, жидкое и газообразное.

Например, вода может находиться в твердом (лед), жидком (вода) и газообразном (пар) состояниях.

Газ расширяется, пока не заполнит весь отведенный ему объем. Если рассмотреть газ на молекулярном уровне, мы увидим беспорядочно мечущиеся и сталкивающиеся между собой и со стенками сосуда молекулы, которые, однако, практически не вступают во взаимодействие друг с другом. Если увеличить или уменьшить объем сосуда, молекулы равномерно перераспределятся в новом объеме.

В отличие от газа при заданной температуре занимает фиксированный объем, однако и она принимает форму заполняемого сосуда - но только ниже уровня ее поверхности. На молекулярном уровне жидкость проще всего представить в виде молекул-шариков, которые хотя и находятся в тесном контакте друг с другом, однако имеют свободу перекатываться друг относительно друга, подобно круглым бусинам в банке. Налейте жидкость в сосуд - и молекулы быстро растекутся и заполнят нижнюю часть объема сосуда, в результате жидкость примет его форму, но не распространится в полном объеме сосуда.

Твердое тело имеет собственную форму, не растекается по объему контейнера и не принимает его форму. На микроскопическом уровне атомы прикрепляются друг к другу химическими связями, и их положение друг относительно друга фиксировано. При этом они могут образовывать как жесткие упорядоченные структуры - кристаллические решетки, - так и беспорядочное нагромождение - аморфные тела (именно такова структура полимеров, которые похожи на перепутанные и слипшиеся макароны в миске).

Выше были описаны три классических агрегатных состояния вещества. Имеется, однако, и четвертое состояние, которые физики склонны относить к числу агрегатных. Это плазменное состояние. Плазма характеризуется частичным или полным срывом электронов с их атомных орбит, при этом сами свободные электроны остаются внутри вещества.

Изменение агрегатных состояний вещества мы можем наблюдать воочию в природе. Вода с поверхности водоемов испаряется, и образуются облака. Так жидкость переходит в газ. Зимой вода в водоемах замерзает, переходя в твердое состояние, а весной вновь тает, переходя в обратно в жидкость. Что происходит с молекулами вещества при переходе его из одного состояния в другое? Меняются ли они? Отличаются ли, например, молекулы льда от молекул пара? Ответ однозначный: нет. Молекулы остаются абсолютно теми же. Меняется их кинетическая энергия, а соответственно и свойства вещества.

Энергия молекул пара достаточно велика, чтобы разлетаться в разные стороны, а при охлаждении пар конденсируется в жидкость, и энергии у молекул все еще достаточно для почти свободного перемещения, но уже недостаточно, чтобы оторваться от притяжения других молекул и улететь. При дальнейшем охлаждении вода замерзает, становясь твердым телом, и энергии молекул уже недостаточно даже для свободного перемещения внутри тела. Они колеблются около одного места, удерживаемые силами притяжения других молекул.

При достаточно низкой температуре испарение жидкости происходит с ее свободной поверхности и носит спокойный характер. По достижении определенной температуры, называемой температурой кипения , парообразование начинает происходить не только со свободной поверхности, но и в объеме жидкости. Внутри нее возникают, увеличиваются в размерах и поднимаются на поверхность пузыри пара. Парообразование приобретает бурный характер и называется кипением. Механизм кипения заключается в следующем.

В жидкости всегда есть мельчайшие пузырьки воздуха, которые, подобно броуновским частицам, совершают медленные беспорядочные перемещения в объеме жидкости. Внутри пузырьков, наряду с воздухом, имеется также насыщенный пар окружающей жидкости. Условием стабильности размера пузырька является равенство внутреннего и внешнего давлений на его поверхность. Внешнее давление равно сумме атмосферного давления и гидростатического давления на глубине, где находится пузырек. Внутреннее давление равно сумме парциальных давлений воздуха и пара внутри пузырька. Таким образом,

.

Для малых глубин, на которых гидростатическое давление мало по сравнению с атмосферным, можно положить , и последнее равенство примет вид:

Если несколько увеличить температуру, то давление насыщенного пара в пузырьке возрастет и размер пузырька увеличится, давление воздуха внутри него уменьшится, так что сумма останется неизменной и условие равновесия (13.19) будет выполняться при возросшей температуре для пузырька с увеличившимся размером. Однако, если температуру увеличить настолько, что давление насыщенного пара в пузырьке станет равно атмосферному давлению,

то равенство (13.19) перестанет выполняться. Размер пузырька и масса пара в нем будут возрастать, пузырек под действием выталкивающей (архимедовой) силы устремится к поверхности жидкости.Жидкость начнет кипеть. Итак, равенство (13.20) является условием кипения жидкости в сосуде на малой глубине: кипение жидкости на малой глубине происходит при такой температуре, при которой давление насыщенных паров этой жидкости становится равным атмосферному давлению. Таким образом, температура кипения зависит от атмосферного давления.

Пример 13.4. Вода при нормальном атмосферном давлении кипит при температуре . Следовательно, давление насыщенных паров воды при этой температуре равно нормальному атмосферному давлению.

Пример 13.5. При температуре объем пузырька, находящегося в воде на малой глубине, равен . Температура воды стала равна . Каким станет объем пузырька при температуре ?Атмосферное давление нормальное. Давление насыщенных паров воды при температуре равно , а при температуре оно равно .

Обозначим через массу воздуха в пузырьке. Имеем:

,

где - молярная масса воздуха, - давление воздуха в пузырьке объема при температуре . В соответствии с условием равновесия размера пузырька (13.19) следует положить . Получим:

Применяя последнее равенство при двух различных температурах и , получим:

Из последних равенств находим:

.

Пример 13.6. Рассмотрим раствор нелетучего вещества в некотором растворителе . Применяя закон Рауля (13.3), получим для давления насыщенного пара над раствором:

.

Ввиду нелетучести вещества имеем , и последнее равенство примет вид:

.

Итак, давление насыщенного пара над раствором меньше, чем над чистым растворителем (при одной и той же температуре). Отсюда следует, что раствор нужно нагреть до более высокой температуры, чем чистый растворитель, для того, чтобы давление насыщенного пара сравнялось с атмосферным и началось кипение. Таким образом, температура кипения рассматриваемого раствора выше, чем температура кипения чистого растворителя.

Задача 13.5. Найти температуру кипения воды в горах на высоте над уровнем моря. Атмосферное давление на уровне моря считать нормальным. Температуру атмосферы принять равной .

Ответ: , где - температура кипения воды при нормальном атмосферном давлении, - молярная масса воздуха, - скрытая молярная теплота испарения воды при температурах, близких к .

Указание. Для нахождения давления атмосферы на уровне воспользоваться барометрической формулой. Для нахождения давления насыщенного пара при температуре воспользоваться формулой (13.17). Использовать условие кипения (13.20).

13.7. Превращения «жидкость - твердое тело»

При достаточно низких температурах все жидкости, за исключением жидкого гелия, переходят в твердое состояние.

Рассмотрим превращение однокомпонентной, то есть состоящей из атомов одного сорта жидкости в твердое тело. Этот процесс называется кристаллизацией . Кристаллизация является переходом системы атомов в состояние с более высокой степенью порядка и происходит при определенной температуре, называемой температурой плавления (отвердевания ). При этой температуре кинетическая энергия теплового движения атомов становится достаточно малой и силы взаимодействия между атомами могут удерживать атомы в определенных положениях - узлах кристаллической решетки.

Процесс превращения твердого тела в жидкость называется плавлением и является процессом, обратным кристаллизации. Происходит этот процесс при той же температуре, что и плавление.

Если непрерывно подводить к твердому телу тепло, то его температура будет меняться со временем так, как показано на рис. 13.4 а. Участок соответствует нагреванию твердого тела, участок - двухфазному состоянию вещества, при котором находятся в равновесии твердая и жидкая фазы этого вещества. Таким образом, участок соответствует плавлению твердого тела. В точке все вещество становится жидким и дальнейший подвод тепла сопровождается повышением температуры жидкости.

Тепло, которое подводится к системе «твердое тело - жидкость» на этапе плавления, не приводит к изменению температуры системы и идет на разрушение связей между атомами. Это тепло называется скрытой теплотой плавления .

Если жидкость отдает тепло, то ее температура зависит от времени так, как показано на рис. 13.4 б. Стадия соответствует охлаждению жидкости, стадия - ее кристаллизации (двухфазным состояниям системы), и стадия -охлаждению твердого тела. Тепло, которое отдает система на стадии кристаллизации, называется скрытой теплотой кристаллизации . Она равна скрытой теплоте плавления.

Зависимости температуры системы от времени, изображенные на рис. 13.4, характерны именно для кристаллических тел. Для аморфных веществ при их нагревании (охлаждении) график зависимости температуры от времени является монотонной кривой, что соответствует постепенному размягчению (отвердеванию) аморфного вещества при возрастании (уменьшении) его температуры.

Начинается кристаллизация в жидкости вблизи центра или центров кристаллизации. Ими служат случайные объединения атомов, к которым затем присоединяются, выстраиваясь, другие атомы, пока вся жидкость не превратится в твердое тело. Роль центров кристаллизации могут играть также инородные макроскопические частицы, если они присутствуют в жидкости.

Обычно в жидкости при ее охлаждении возникает много центров кристаллизации. Вокруг этих центров формируются структуры атомов, которые в конечном итоге образуют поликристалл , состоящий из множества малых кристаллов. Условная схема поликристалла изображена на рис. 13.5.

При особых условиях оказывается возможным получить («вырастить») одиночный кристалл - монокристалл , образующийся вокруг единого центра кристаллизации. Если при этом для всех направлений обеспечены одинаковые условия для присоединения частиц из жидкости к образующемуся кристаллу, то он получится правильно ограненным соответственно его свойствам симметрии.

Температура плавления вообще-то зависит от давления, которому подвергается твердое тело, возможный ход этой зависимости изображен графически на рис. 13.6. Снять опытную зависимость можно, например, поместив тигель с расплавляемым веществом в атмосферу газа, давление которого можно менять. Кривая зависимости является кривой равновесия жидкой и твердой фаз. Точки под кривой соответствуют твердому состоянию вещества, а над кривой - жидкому состоянию. Если при неизменной температуре увеличивать давление над жидкостью от точки , то при давлении (точка ) в жидкости возникнет твердая фаза, а при дальнейшем увеличении давления вся жидкость отвердеет (точка ).

Теоретическую связь между давлением и температурой плавления можно установить, рассмотрев цикл Карно, совершаемый двухфазной системой «твердое тело - жидкость» совершенно аналогично тому, как была установлена связь (13.12) между давлением насыщенного пара над жидкостью и температурой. Произведя в (13.12) формальные замены , , , где - скрытая молярная теплота плавления, - молярный объем твердой фазы, - молярный объем жидкой фазы, получим:

. (13.21)

Если вещество не является чистым, а представляет собой сплав , то есть содержит разнородные атомы, то в общем случае отвердевание может происходить в некотором интервале температур, а не при определенной температуре, как у чистых веществ.

Задача 13.6 . Уксусная кислота при атмосферном давлении плавится при температуре . Разность удельных объемов (то есть объемов единицы массы кислоты) жидкой и твердой фаз . Точка плавления уксусной кислоты смещается на при изменении давления на . Найти удельную (то есть отнесенную к единице массы) теплоту плавления уксусной кислоты.

Ответ: .

Указание. Воспользоваться формулой (13.21). Учесть, что молярный объем связан с удельным объемом соотношением , где - молярная масса. Молярная теплота плавления связана с удельной теплотой плавления соотношением .

Важно знать и понимать, каким образом осуществляются переходы между агрегатными состояниями веществ . Схему таких переходов изобразим на рисунке 4.

5 - сублимация (возгонка) - переход из твердого состояния в газообразное, минуя жидкое;

6 - десублимация - переход из газообразного состояния в твердое, минуя жидкое.

Б. 2 Плавление льда и замерзание воды (кристаллизация)
Если поместить лед в колбу и начать его нагревать с помощью горелки, то можно будет заметить, что его температура начнет повышаться, пока не достигнет температуры плавления (0 o C). Затем начнется процесс плавления, но при этом температура льда повышаться не будет, и только после окончания процесса плавления всего льда температура образовавшейся воды начнет повышаться.

Определение. Плавление - процесс перехода из твердого состояния в жидкое. Этот процесс происходит при постоянной температуре.

Температура, при которой происходит плавление вещества, называется температурой плавления и является измеренной величиной для многих твердых веществ, а потому табличной величиной. Например, температура плавления льда равна 0 o C, а температура плавления золота 1100 o C.

Обратный плавлению процесс - процесс кристаллизации - также удобно рассматривать на примере замерзания воды и превращения ее в лед. Если взять пробирку с водой и начать ее охлаждать, то сначала будет наблюдаться уменьшение температуры воды, пока она не достигнет 0 o C, а затем ее замерзание при постоянной температуре), и уже после полного замерзания дальнейшее охлаждение образовавшегося льда.
Если описанные процессы рассматривать с точки зрения внутренней энергии тела, то при плавлении вся полученная телом энергия расходуется на разрушение кристаллической решетки и ослабление межмолекулярных связей, таким образом, энергия расходуется не на изменение температуры, а на изменение структуры вещества и взаимодействия его частиц. В процессе же кристаллизации обмен энергиями происходит в обратном направлении: тело отдает тепло окружающей среде, а его внутренняя энергия уменьшается, что приводит к уменьшению подвижности частиц, увеличению взаимодействия между ними и отвердеванию тела.

График плавления и кристаллизации

Полезно уметь графически изобразить процессы плавления и кристаллизации вещества на графике. По осям графика расположены: ось абсцисс - время, ось ординат - температура вещества. В качестве исследуемого вещества примем лед при отрицательной температуре, т. е. такой, который при получении тепла не начнет сразу плавиться, а будет нагревать до температуры плавления. Опишем участки на графике, которые представляют собой отдельные тепловые процессы:
Начальное состояние - a: нагревание льда до температуры плавления 0 o C;
a - b: процесс плавления при постоянной температуре 0 o C;
b - точка с некоторой температурой: нагревание образовавшейся из льда воды до некоторой температуры;
Точка с некоторой температурой - c: охлаждение воды до температуры замерзания 0 o C;
c - d: процесс замерзания воды при постоянной температуре 0 o C;
d - конечное состояние: остывание льда до некоторой отрицательной температуры.