Украшения. Аксессуары. Дизайн ногтей. Цвета. Нанесение. Ногти

Простой самодельный контроллер заряда от солнечных батарей. Контроллер заряда для солнечных батарей

Солнечная энергетика пока что ограничивается (на бытовом уровне) созданием фотоэлектрических панелей относительно невысокой мощности. Но независимо от конструкции фотоэлектрического преобразователя света солнца в ток это устройство оснащается модулем, который называют контроллер заряда солнечной батареи.

Действительно, в схему установки фотосинтеза солнечного света входит аккумуляторная батарея – накопитель энергии, получаемой от солнечной панели. Именно этот вторичный источник энергии обслуживается в первую очередь контроллером.

Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда .

Такой выглядит одна из многочисленных существующих моделей контроллеров заряда для солнечной батареи. Этот модуль относится к числу разработок типа PWM

Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.

Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений). Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя.

Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.

Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.

В зависимости от мощности контроллера заряда аккумуляторных батарей солнечной энергетической установки, конструкции этих устройств могут иметь самую разную конфигурацию

В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.

Применяемые на практике виды

На промышленном уровне налажен и осуществляется выпуск двух видов электронных устройств, исполнение которых подходит для установки в схему солнечной энергетической системы:

  1. Устройства серии PWM.
  2. Устройства серии MPPT.

Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и ветряной энергетики.

Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.

Одна из популярных в обществе моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей

Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность.

Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.

Контроллер типа MPPT:

  • имеет более высокую стоимость;
  • обладает сложным алгоритмом настройки;
  • даёт выигрыш по мощности только на панелях значительной площади.

Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.

Контроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных

Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).

Структурные схемы контроллеров

Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.

Вариант #1 – устройства PWM

Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.

Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).


Так примерно выглядит структурная схема устройств, выполненных на базе PWM технологий. Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность

Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.

Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.

Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.

Вариант #2 – приборы MPPT

Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.

Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.

Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.

Схемой таких устройств реализуются несколько методов контроля:

  • возмущения и наблюдения;
  • возрастающей проводимости;
  • токовой развёртки;
  • постоянного напряжения.

А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.

Способы подключения контроллеров

Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.

Так, например, если используется контроллер, рассчитанный на максимум входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.

Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели

Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

Недопустимо наличие в непосредственной близости от прибора источников вибраций, тепла и влажности. Место установки необходимо защитить от попадания атмосферных осадков и прямых солнечных лучей.

Техника подключения моделей PWM

Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.

Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:

  1. Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
  2. Непосредственно в точке контакта положительного провода включить защитный предохранитель.
  3. На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
  4. Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).

Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В более подробно описана схема сборки солнечных батарей с аккумулятором.

Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.

Порядок подключения приборов MPPT

Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.

Для контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками

Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм 2 . То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм 2 .

Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.

Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.

Структурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина

Перед подключением к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.

Подключение периферии к аппарату MTTP:

  1. Выключатели панели и аккумулятора перевести в положение «отключено».
  2. Извлечь защитные предохранители на панели и аккумуляторе.
  3. Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
  4. Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
  5. Соединить кабелем клемму заземления с шиной «земли».
  6. Установить температурный датчик на контроллере согласно инструкции.

После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.

Экран прибора покажет значение напряжения солнечной панели. Этот момент свидетельствует об успешном запуске энергетической солнечной установки в работу.

Выводы и полезное видео по теме

Промышленностью выпускаются устройства многоплановые с точки зрения схемных решений. Поэтому однозначных рекомендаций относительно подключения всех без исключения установок дать невозможно.

Однако главный принцип для любых типов приборов остаётся единым: без подключения АКБ на шины контроллера соединение с фотоэлектрическими панелями недопустимо. Аналогичные требования предъявляются и для включения в схему . Его следует рассматривать как отдельный модуль, подключаемый на АКБ прямым контактом.

Если у вас есть необходимый опыт или знания, пожалуйста, поделитесь им с нашими читателями. Оставляйте свои комментарии в расположенном ниже блоке. Здесь же можно задать вопрос по теме статьи.

Прислал:

Представлена простая, но "красивая" схема шунтового регулятора для зарядки аккумуляторов от солнечной батареи. Работает только на заряд.

Стабилизаторы для солнечных батарей весьма разнообразны. Самый простой тип стабилизатора – шунтовой. Он имеет следующие преимущества: простота, низкая рассеиваемая мощность, низкая стоимость, высокая надежность.

Но в обмен на эти преимущества приходится мириться с тем, что напряжение на батарее постоянно изменяется, то вверх, то вниз, что аккумулятор переключается, то в режим зарядки полным током, то в состояние отсутствия зарядного тока, и, что постоянные переключения приводят к импульсным помехам на выходе стабилизатора.

В зависимости от назначения, необходимо выбрать наиболее подходящий тип стабилизатора. В большинстве солнечных установок я использовал линейные стабилизаторы, который имеют преимущества плавного регулирования напряжения и крайне небольших выбросов напряжения на нагрузке. Правда, они имеют и существенные недостатки: более высокую стоимость, большие размеры и высокую рассеиваемую мощность. Но когда меня попросили сделать солнечный стабилизатор для яхты, который обслуживает только одну солнечную панель на 3.1 ампера, и подключается к аккумуляторной батарее на 300 A·ч, лучше было использовать маленькое и простое устройство, чем линейный стабилизатор.

Так что я спроектировал и изготовил именно такой стабилизатор. Вы также можете применить его для таких случаев, когда мощность солнечных батарей довольно мала в сочетании с относительно большой ёмкостью аккумулятора, или когда низкая стоимость, простота конструкции и высокая надёжность являются более важными, чем стабильность линейного регулирования.

Стабилизатор был собран на макетной плате и смонтирован в герметичном пластмассовом корпусе, который, в свою очередь, был установлен на алюминиевой монтажной пластине. Клеммы изготовлены из латуни. Такая конструкция устройства использована, чтобы противостоять суровой морской среде и небрежному обращению.

Схема

Если солнечная панель не генерирует энергию, вся схема отключена и не потребляет от аккумулятора абсолютно никакого тока. Когда солнце встает, и панель начинает выдавать не менее 10 В, включаются индикаторный светодиод и два маломощных транзистора. Устройство начинает работать. Пока напряжение батареи остается ниже 14 В, операционный усилитель (он имеет очень низкое потребление тока) будет держать MOSFET транзистор закрытым, так что ничего особенного не случится, и ток от солнечной панели будет проходить через диод Шоттки на батарею.

Когда напряжение батареи достигнет значения, равного 14.0 В, операционный усилитель U1 откроет MOSFET транзистор. Транзистор будет шунтировать солнечную панель (для нее это совершенно безопасно), аккумулятор перестанет получать ток заряда, индикатор погаснет, два маломощных транзистора закроются, и конденсатор С2 медленно разрядится. После истечения примерно 3 секунд, конденсатор С2 разрядится достаточно, чтобы преодолеть гистерезис микросхемы U1, которая снова закроет MOSFET транзистор. Теперь схема снова будет заряжать аккумулятор, пока его напряжение вновь не достигнет уровня переключения.

Таким образом, устройство работает циклично, каждый период включения полевого транзистора длится 3 секунды, а каждый из периодов заряда аккумулятора длится столько, сколько необходимо для достижения напряжения 14.0 В. Длительность этого периода будет меняться в зависимости от зарядного тока аккумулятора и мощности подключенной к нему нагрузки.

Минимальное время включения схемы определяется временем заряда конденсатора С2 током, ограниченным транзистором Q3 примерно до 40 мА. Эти импульсы могут быть очень короткими.

Конструкция

Конструкция схемы очень проста. Все компоненты довольно доступны, и большинство из них могут быть легко заменены другими сходными компонентами. Я бы не советовал заменять TLC271 или LM385-2.5, если вы не уверены в правильности замены. Обе эти микросхемы – маломощные приборы, и их потребление непосредственно определяет время выключения стабилизатора. Если вы используете микросхемы, которые имеют другое энергопотребление, необходимо изменить ёмкость конденсатора С2, подобрать смещение транзистора Q3, но может, даже это не поможет правильно настроить схему.

MOSFET транзистор может быть заменен любым другим с достаточно низким сопротивлением открытого канала, чтобы оно позволяло эффективно шунтировать солнечную панель. Диод D2 также может быть любым, способным выдержать максимальный ток солнечной панели. Применение диода Шоттки предпочтительнее, потому что на нем будет падать вдвое меньшее напряжение, чем на стандартном кремниевом, и такой диод будет в два раза меньше греться. Стандартный диод подходит, если правильно размещен и смонтирован. С приведенными на схеме компонентами стабилизатор может работать с солнечными панелями с током до 4 А.

Для более крупных панелей необходимо заменить лишь MOSFET транзистор и диод более мощными. Остальные компоненты схемы останутся прежними. Радиатор для управления 4 А панелью не требуется. Но если поставить MOSFET на подходящий теплоотвод, схема сможет работать с существенно более мощной панелью.

Резистор R8 в этой схеме равен 92 кОм, что является нестандартным значением. Я предлагаю, чтобы вы использовали включенные последовательно резисторы 82 кОм и 10 кОм, это проще, чем пытаться найти специальный резистор. Резисторы R8, R10 и R6 определяют напряжение отсечки, так что лучше, если они будут точными. Я использовал 5% резисторы, но если Вы хотите повысить надежность устройства, используйте 1% резисторы или выберите наиболее точные из 5% с помощью цифрового омметра.

Вы можете также использовать подстроечный резистор, и таким образом, регулировать напряжение, но я бы не советовал этого делать, если Вы хотите получить высокую надежность в агрессивной среде. Подстроечные резисторы просто выходят из строя в таких условиях.

На английском языке.

Переход на альтернативные источники энергии продолжается уже довольно много лет, охватывая разные сферы. Несмотря на привлекательность концепции получения бесплатной энергии, на практике ее реализовать непросто. Возникают и технические, и финансовые сложности. Тем не менее в случае небольших по объему проектов альтернативное энергоснабжение себя оправдывает. Например, контроллер для позволяет использовать бесплатное питание для электроприборов даже в домашних условиях. Данный компонент регулирует работу аккумулятора, позволяя оптимально расходовать генерируемый заряд.

Какие параметры контроллера нужно учитывать?

В первую очередь следует исходить из суммарной мощности и входного напряжения системы, под которую подбирается контроллер. То есть именно мощность батареи или комплекса элементов питания не должна превышать произведения напряжения системы на величину выходного тока управляющего устройства. Причем контроллер для подбирается из расчета напряжения в разряженном аккумуляторе. К тому же следует предусмотреть и 20-процентный запас для напряжения на случай повышенной солнечной активности.

Также контроллер рассчитывается в показателе соответствия входному напряжению. Эта величина строго регламентируется на те же случаи аномальной активности излучения. На рынке контроллер для солнечной батареи представлен в разных видах, каждый из которых предполагает свою специфику оценки описанных характеристик.

Особенности выбора контроллеров PWM

Выбор данного типа управляющего устройства отличается простым подходом - будущему пользователю нужно определиться только с оптимальными показателями тока короткого замыкания в используемом модуле. Также следует предусматривать некоторый запас. Например, если ток солнечного генератора мощностью 100 Вт стабильно функционирует при показателе в 6,7 А, то контроллер должен располагать номинальным значением тока порядка 7,5 А.

Иногда берется в расчет и ток разряда. Особенно его важно учитывать при эксплуатации контроллеров с функцией управления нагрузкой. В данном случае выбор контроллера для солнечной батареи делается с таким расчетом, чтобы ток разряда не превышал аналогичное номинальное значение в управляющем устройстве.

Особенности выбора контроллеров MPPT

Данный тип контроллеров подбирается по критерию мощности. Так, если максимальный ток устройства составляет 50 А и система оптимально функционирует с напряжением 48 В, то пиковая мощность контроллера составит около 2900 Вт с учетом добавки страхующего потенциала. И здесь важен еще один аспект. Дело в том, что напряжение солнечных генераторов может понижаться в случаях их разряда. Соответственно, и мощность может упасть на существенную долю процента. Но это не значит, что можно делать скидку и на показатели самого контроллера - его мощностный потенциал должен охватывать именно предельные значения.

Кроме того, в вопросе о том, как выбрать контроллер для солнечных батарей типа MPPT, следует учитывать и особенности излучаемой радиации. На поверхности земли интенсивность солнечного света добавляет еще 20% к мощности аккумуляторной инфраструктуры. Такие явления нельзя назвать правилом, но даже как случайность они должны предусматриваться в расчете мощности контроллера.

Как сделать котроллер самостоятельно?

Типовой вариант самодельного контроллера предполагает использование скромного набора элементов. Среди них будет транзистор, выдерживающий ток до 49 А, реле-регулятор от автомобиля, резистор на 120 кОм и диодный элемент. Далее реле подключается к аккумулятору, а затем провод по резистору проходит к затвору транзистора. В процессе работы реле-регулятора плюсовой сигнал должен отпирать затвор, и ток от модуля солнечного света будет проходить через лапки транзистора в аккумулятор.

Если делается универсальный контроллер для с расчетом на исключение самопроизвольного потребления накапливаемой энергии, то интеграция в систему диода будет обязательной. В ночное время он создаст для подсветку, исключая дополнительное потребление энергии модулем.

Можно ли обойтись без контроллера для солнечной батареи?

Перед тем как дать ответ на этот вопрос, нужно вспомнить, какова вообще функция контроллера в составе солнечного модуля. С его помощью владелец может автономно управлять процессом заряда аккумуляторного блока за счет энергии света. Если контроллера не будет, то процесс наполнения энергией может происходить вплоть до момента выкипания электролита. То есть совсем без средства управления взаимодействием солнечной панели и аккумулятора обойтись нельзя. Другое дело, что контроллер для солнечной батареи может быть заменен вольтметром. При обнаружении пиковых значений заряда и напряжения пользователь самостоятельно может остановить процесс путем отключения блока АКБ. Такой подход, конечно, неудобен по сравнению с автоматическим контролем, но в случае редкого использования системы и он себя может оправдать.

Заключение

Изготовлением солнечных контроллеров и других комплектующих для подобного рода модулей сегодня занимаются многие компании. Этот сегмент уже не рассматривается обособленным и специфическим. На рынке такие компоненты можно приобрести за 10-15 тыс. рублей, причем хорошего качества. Конечно, самодельный контроллер для солнечной батареи с применением бюджетных резисторов и деталей автомобильной электротехники обойдется в разы дешевле, но он едва ли сможет гарантировать должный уровень надежности. А момент стабильности работы и безопасности особенно важен в эксплуатации солнечных панелей, не говоря об аккумуляторе. В случае успешного оснащения солнечного модуля качественным контроллером владелец сможет рассчитывать на автоматическое накопление электроэнергии без необходимости вмешательства в процесс генерации.

Особую популярность в последнее время приобрели системы, функционирующие автономно, без подключения к электросети. Подобные устройства идеально подходят для работы в замкнутом режиме. Конструкции подобных систем довольно сложные и состоят из нескольких элементов, самым главным из которых является контроллер.

Особенности

Контроллеры заряда имеют несколько немаловажных особенностей. Наиболее важными являются функции защиты, которые служат для повышения степени надежности работы данного устройства.

Необходимо отметить наиболее распространенные в подобных конструкциях разновидности защит:

  • устройства оснащены надежной защитой от неправильного подсоединения полярности;
  • очень важно предотвратить вероятность коротких замыканий в нагрузке и на входе, поэтому производители обеспечивают контроллеры надежной защитой от возникновения подобных ситуаций;
  • немаловажной является защита устройства от молнии, а также различных перегревов;
  • конструкции контроллеров оснащаются специальной защитой от перенапряжений и разрядки аккумулятора в ночное время суток.



Дополнительно устройство оснащается разнообразными электронными предохранителями и специальными информационными дисплеями. Монитор позволяет узнать необходимую информацию о состоянии аккумулятора и всей системы.

Помимо этого, на экране отображается множество другой немаловажной информации: напряжение аккумуляторной батареи, степень заряда и многое другое.

В конструкцию многих моделей контроллеров входят специальные таймеры, благодаря которым активируется ночной режим работы прибора.

Кроме того, существуют более сложные модели подобных устройств, способные одновременно управлять работой двух независимых друг от друга батарей. В наименовании подобных приборов присутствует приставка Duo.



Необходимо отметить современные модели приборов, которые способны сбрасывать лишнюю энергию на ТЭНы.

Виды

Существует несколько типов контроллеров для заряда солнечных батарей. Наиболее простым и доступным по стоимости прибором является On/Off.

Основным предназначением и преимуществом данного вида приборов является своевременное отключение подачи заряда на аккумулятор. Это свойство аппарата немаловажно: во время достижения оптимального напряжения оно помогает избежать перегревания прибора. При этом обязательно следует упомянуть о недостатке подобного вида устройств – быстрое отключение. После того как будет достигнут максимальный ток, нужно в течение примерно двух часов поддержать процесс заряда, однако данный прибор отключает его сразу. Степень заряда аккумулятора в этом случае будет порядка 70 процентов, что значительно ниже необходимого значения. Этот показатель оказывает негативное влияние на работу аккумуляторной батареи.



Второй тип контроллеров для заряда солнечной батареи – электронный прибор PWM. Выпуск подобной конструкции был налажен сравнительно давно. В основу работы устройства заложены специальные алгоритмы широтно-импульсной модуляции. Несмотря на это, подобные приборы достаточно эффективны. PWM-устройства являются оптимальным вариантом для использования в бытовых условиях.

Более современное электронное устройство – МРРТ. Прибор оснащен новейшими технологиями, направленными на отслеживание максимальной степени мощности. Это в несколько раз увеличивает эффективности и функциональность данного устройства. Однако, несмотря на это, необходимо отметить, что при выборе устройства для использования в бытовых условиях следует выбирать прибор из серии PWM. Это обусловлено высокой стоимостью приборов из серии МРРТ, а также сложной настройкой. Подобные устройства являются оптимальным вариантом для применения в системах масштабной солнечной энергетики.



Если вы хотите подобрать гибридный вариант, тогда, прежде всего, необходимо понять, как микроконтроллер работает (принцип работы и ШИМ).

Как выбрать

Выбирая подходящий контроллер для заряда солнечной батареи, необходимо обратить особое внимание на несколько очень важных критериев.

На первом месте стоит входящее напряжение. Максимальное значение данного показателя должно соответствовать определенным нормам. В конструкциях подобных устройств иногда используются несколько батарей. Поэтому напряжение на схему прибора идет одновременно от всех батарей, соединенных различными способами. Чтобы прибор правильно функционировал, необходимо определенное напряжение, показатели которого не должны превышать предусмотренные производителем нормы.




Для расчета значения мощности за основу берется показатель напряжения при разряженных аккумуляторах аппарата. При этом необходимо перемножить показатели выходного тока и напряжение, которое вырабатывается солнечной батареей. После этого следует добавить к полученному результату 20 процентов на резерв.

Еще одним важным критерием при выборе контроллера является вид нагрузки. Не следует использовать устройство для подключения различных бытовых приборов. Это приведет к выводу контроллера из строя, что обусловлено использованием в конструкции прибора различных технологий, которые учитывают всю нагрузку, заложенную в свойствах аккумулятора. Чтобы избежать возникновения подобных ситуаций, необходимо использовать устройство строго по назначению.




Схема установки

Вы можете сделать самодельный вариант своими руками и настроить его, если будете учитывать все наши рекомендации.

Следует отметить, что при подключении каждого типа подобных приборов необходимо использовать максимально соответствующий вид солнечных панелей. Например, при использовании устройства, рассчитанного на входное напряжение порядка 100 вольт, следует воспользоваться солнечными панелями, у которых подобный показатель на выходе соответствует данному значению.


Прежде чем приступить к подключению прибора, следует определиться с наиболее подходящим местом для его установки. Оптимальным решением данного вопроса является сухое, хорошо проветриваемое помещение. Категорически не рекомендуется располагать рядом с аппаратом легковоспламеняющиеся материалы. Помимо этого, категорически недопустимо расположение устройства очень близко к различным источникам вибрации, влажности, а также разнообразным обогревателям и печам. Место для размещения аппарата должно быть надежно защищено от различных атмосферных осадков и прямых солнечных лучей.


Последовательность подключения устройств PWM

Чтобы добиться максимального эффекта от использования подобного устройства, необходимо точно следовать инструкции, а также соблюдать определенную последовательность при подключении аппарата. Процесс подсоединения приборов PWM и различных периферийных устройств не вызовет больших затруднений – справиться с данной задачей сможет любой человек.



Каждая конструкция оснащена специальными маркированными клеммами.

Подключение периферийных устройств необходимо осуществлять в точном соответствии с обозначениями на контактных клеммах:

  • необходимо соединить аккумулятор и аккумуляторную батарею при помощи специального провода и клеммы, внимательно соблюдая полярность;
  • к определенному положительному проводу нужно подсоединить предохранитель, предназначенный для защиты прибора;
  • на соответствующих контактах контроллера следует зафиксировать специальные проводники, выходящие от батареи солнечных панелей, при этом также нужно тщательно соблюдать полярность;
  • следует подсоединить к определенным выходам аппарата специальную лампу для контроля соответствующего напряжения.


Не следует нарушать указанную последовательность. Например, категорически не рекомендуется подсоединять к контроллеру при отключенном аккумуляторе солнечные панели – это может привести к поломке аппарата. Инвертор конструкции нужно соединять с аккумуляторной батареей при помощи специальных клемм.

Порядок подключения приборов MPPT

Общие правила подключения этого типа аппаратов практически идентичны монтажу других видов приборов. Однако технология установки немного отличается, так как контроллеры MPPT относятся к более мощным устройствам.

Для конструкций, рассчитанных на высокую мощность, для соединения силовых цепей необходимо использовать электрокабели с большим сечением.

Соединительные электрокабели обязательно должны быть оснащены специальными наконечниками , выполненными из меди, которые необходимо предварительно обжать с помощью определенного инструмента. Отрицательные клеммы солнечной панели и аккумулятора следует оснастить специальными переходниками с предохранителями и выключателями. Благодаря подобному оснащению конструкции прибора можно добиться значительного сокращения потери энергии и гарантированной максимально безопасной эксплуатации конструкции.


Предварительно перед подключением прибора обязательно следует убедиться, что напряжение на клеммах соответствует либо имеет значение меньше допустимой нормы, которая необходима для подачи на вход контроллера.

Подсоединение периферии к аппарату MTTP:

  • предварительно следует отключить прибор и аккумулятор при помощи специальных выключателей;
  • необходимо демонтировать специальные предохранители на солнечной панели и аккумуляторе;
  • нужно подсоединить при помощи электрокабеля и клемм аккумулятор и контроллер;
  • подключить с помощью специального провода и клемм солнечную панель с аппаратом (данные элементы обозначены соответствующими знаками);
  • соединить с помощью электрокабеля определенную клемму заземления с шиной «земли»;
  • установить на конструкции специальный датчик, определяющий температуру.

Если вы задумывались над альтернативным способом получения энергии и решили устанавливать солнечные батареи, то наверняка хотите сэкономить. Одной из возможностей экономии — сделать контроллер заряда своими руками . При установке солнечных генераторов — панелей, требуется много дополнительного оборудования: контроллеры заряда, аккумуляторы, для перевода тока под технические стандарты.

Рассмотрим изготовление контроллера заряда солнечной батареи своими руками .

Это устройство контролирующее уровень зарядки свинцовых аккумуляторов, не допускающее их полной разрядки и перезарядки. Если аккумулятор начнет разряжаться в аварийном режиме, аппарат снизит нагрузку и не допустит полной разрядки.

Стоит отметить, что самостоятельно изготовленный контроллер не сравниться по качеству и функционалу с промышленным, но он будет вполне достаточен для работы элетросети. В продаже попадаются изделия, изготовленные в подвальных условиях, которые имеют очень низкий уровень надежности. Если у вас не хватает средств на дорогостоящий агрегат, лучше собрать его самостоятельно.

Контроллер заряда акб от солнечных батарей изготовленный самостоятельно

Даже самодельный продукт должен соответствовать следующим условиям:

  • 1,2P< U x I , где P – общая мощность всех используемых источников напряжения, I – ток прибора на выходе, U – вольтаж системы при разряженных батареях
  • Максимально разрешенное входное напряжение должно равняться общему напряжению всех батарей без нагрузки.

На изображении ниже вы увидите схему такого электрооборудования. Для того чтобы собрать его потребуются небольшие познания в электроники и немного терпения. Конструкция немного доработана и теперь вместо диода установлен полевой транзистор, регулирующийся компаратором.
Такой контролер заряда будет достаточен для использования в сетях не высокой мощности, с использованием только . Отличается простотой изготовления и дешевизной материалов.

Контроллер заряда для солнечных батарей работает по простому принципу: когда напряжение на накопителе достигает указанного значения, он прекращает зарядку, дальше идет только капельный заряд. В случае падения напряжения показателя ниже установленного порога подача тока на аккумулятор возобновляется. Использование аккумуляторов отключается контролером когда в них заряд менее 11 V. Благодаря работе такого регулятора акб самопроизвольно не разрядится во время отсутствия солнца.



Основные характеристики схемы контролера заряда :

  • Напряжение заряда V=13,8V (настраивается), измеряется при наличии тока заряда;
  • Отключение нагрузки происходит когда Vbat мене 11V (настраивается);
  • Включение нагрузки когда Vbat=12,5V;
  • Температурная компенсация режима заряда;
  • Экономичный компаратор TLC339 можно заменить на более распространенный TL393 или TL339;
  • Падение напряжения на ключах менее 20mV при заряде током 0,5А.

Усовершенствованный контроллер заряда солнечной батареи

Если вы уверены в своих познаниях электронного оборудования, можно попробовать собрать более сложную схему контроллера заряда. Она более надежна и способна работать как от солнечных батарей, так и от ветрогенератора, который поможет вам получать свет по вечерам.

Выше представлена усовершенствованная схема котроллера заряда своими руками. Для изменения пороговых значений применяются подстроечные резисторы, с помощью которых вы будете регулировать параметры работы. Ток, поступающий от источника коммутируется реле. Само реле управляется ключом полевых транзисторов.

Все схемы контроллера заряда проходили проверку на практике и отлично зарекомендовали себя на протяжении нескольких лет.

Для дачи и прочих объектов, где не требуется большое потребление ресурсов, нет смысла затрачиваться на дорогостоящие элементы. Если вы имеете необходимые знания, можно доработать предложенные конструкции или добавить необходимый функционал.

Так вы можете сделать своими руками контроллер заряда при использовании устройств альтернативной энергии. Не стоит отчаиваться если первый блин вышел комом. Ведь никто не застрахован от ошибок. Немного терпения, старания и экспериментов доведут дело до конца. Зато работающее электроснабжение будет отличным поводом для гордости.