Украшения. Аксессуары. Дизайн ногтей. Цвета. Нанесение. Ногти

Определение работы выхода электрона из металла методом прямых ричардсона. Вопрос

Как показывает опыт, свободные электро­ны при обычных температурах практиче­ски не, покидают металл. Следовательно, в поверхностном слое металла должно быть задерживающее электрическое поле, препятствующее выходу электронов из ме­талла в окружающий вакуум. Работа, ко­торую нужно затратить для удаления электрона из металла в вакуум, называет­ся работой выхода. Укажем две вероятные причины появления работы выхода:

1. Если электрон по какой-то причине удаляется из металла, то в том месте, которое электрон покинул, возникает из­быточный положительный заряд и элект­рон притягивается к индуцированному им самим положительному заряду.

2. Отдельные электроны, покидая ме­талл, удаляются от него на расстояния порядка атомных и создают тем самым над поверхностью металла «электронное облако», плотность которого быстро убы­вает с расстоянием. Это облако вместе с наружным слоем положительных ионов решетки образует двойной электрический слой, поле которого подобно полю плоско­го конденсатора. Толщина этого слоя рав­на нескольким межатомным расстояниям (10 -10 - 10 -9 м). Он не создает элек­трического поля во внешнем пространстве, но препятствует выходу свободных элек­тронов из металла.

Таким образом, электрон при вылете из металла должен преодолеть задержи­вающее его электрическое поле двойного слоя. Разность потенциалов  в этом слое, называемая поверхностным скачком потенциала, определяется работой выхода (А) электрона из металла:

где е - заряд электрона. Так как вне двойного слоя электрическое поле отсут­ствует, то потенциал среды равен нулю, а внутри металла потенциал положителен и равен . Потенциальная энергия сво­бодного электрона внутри металла равна - е и является относительно вакуума отрицательной. Исходи из этого можно

Работа выхода выражается в элект­рон-вольтах (эВ): 1 эВ равен работе, со­вершаемой силами поля при перемещении элементарного электрического заряда (за­ряда, равного заряду электрона) при про­хождении им разности потенциалов в 1 В. Так как заряд электрона равен 1,6 l0 -19 Кл, то 1 эВ = 1,6 10 -1 9 Дж.

Работа выхода зависит от химической природы металлов и от чистоты их по­верхности и колеблется в пределах не­скольких электрон-вольт (например, у ка­лия Л=2,2 эВ, у платины A = б,3 эВ). Подобрав определенным образом покры­тие поверхности, можно значительно уменьшить paботу выхода. Например, если нанести на поверхность вольфрама =4,5 эВ) слой оксида щелочно-земельного металла (Са, Sr, Ba), то работа выхода снижается до 2 эВ.

§ 105. Эмиссионные явления и их применение

Если сообщить электронам в металлах энергию, необходимую для преодоления работы выхода, то часть электронов может покинуть металл, в результате чего на­блюдается явление испускания электро­нов, или электронной эмиссии. В зависи­мости от способа сообщения электронам энергии различают термоэлектронную, фо­тоэлектронную, вторичную электронную и автоэлектронную эмиссии.

1. Термоэлектронная эмиссия - это испускание электронов нагретыми метал­лами. Концентрация свободных электро­нов в металлах достаточно высока, поэто­му даже при средних температурах вслед­ствие распределения электронов по скоро­стям (по энергии) некоторые электроны обладают энергией, достаточной для прео­доления потенциального барьера на гра­нице металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше ра­боты выхода, растет и явление термоэлек­тронной эмиссии становится заметным.

Исследование закономерностей термо­электронной эмиссии можно провести с по­мощью простейшей двухэлектродной лам­пы - вакуумного диода, представляюще­го собой откачанный баллон, содержащий два электрода: катод К и анод А. В про­стейшем случае катодом служит нить из тугоплавкого металла (например, воль­фрама), накаливаемая электрическим то­ком. Анод чаще всего имеет форму ме­таллического цилиндра, окружающего ка­тод. Если диод включить в цепь, как это показано на рис. 152, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареи Б а, то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод ис­пускает отрицательные частицы - элек­троны.

Если поддерживать температуру на­каленного катода постоянной и снять за­висимость анодного тока I а от анодного напряжения U a - вольт-амперную харак­теристику (рис. 153), то оказывается, что она не является линейной, т. е. для ваку­умного диода закон Ома не выполняется. Зависимость термоэлектронного тока I от анодного напряжения в области малых

положительных значений U описывается законом трех вторых (установлен русским физиком С. А. Богуславским (1883- 1923) и американским физиком И. Ленгмюром (1881 - 1957)):

I =BU 3/2 ,

где В - коэффициент, зависящий от фор­мы и размеров электродов, а также их взаимного расположения.

При увеличении анодного напряжения ток возрастает до некоторого максималь­ного значения I нас, называемого током на­сыщения. Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение на­пряженности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода.

Плотность тока насыщения определя­ется формулой Ричардсона - Дешмана, выведенной теоретически на основе кван­товой статистики:

j нас =CT 2 e -A/(kT) .

где А - работа выхода электронов из ка­тода, Т - термодинамическая температу­ра, С - постоянная, теоретически одина­ковая для всех металлов (это не подтвер­ждается экспериментом, что, по-видимому, объясняется поверхностными эффектами). Уменьшение работы выхода приводит к резкому увеличению плотности тока на­сыщения. Поэтому применяются оксидные катоды (например, никель, покрытый ок­сидом щелочно-земельного металла), ра­бота выхода которых равна 1 -1,5 эВ.

На рис. 153 представлены вольт-ам­перные характеристики для двух темпера­тур катода: T 1 и Т 2 , причем T 2 >T 1 . С по­вышением температуры катода испуска­ние электронов с катода интенсивнее, при этом увеличивается и ток насыщения. При U a =0 наблюдается анодный ток, т. е. некоторые электроны, эмиттируемые катодом, обладают энергией, достаточной для преодоления работы выхода и дости­жения анода без приложения электриче­ского поля.

Явление термоэлектронной эмиссии ис­пользуется в приборах, в которых необхо­димо получить поток электронов в вакуу­ме, например в электронных лампах, рен­тгеновских трубках, электронных микро­скопах и т. д. Электронные лампы широко применяются в электро- и радиотехнике, автоматике и телемеханике для выпрямле­ния переменных токов, усиления электри­ческих сигналов и переменных токов, гене­рирования электромагнитных колебаний и т. д. В зависимости от назначения в лампах используются дополнительные управляющие электроды.

2. Фотоэлектронная эмиссия - это эмиссия электронов из металла под действием света, а также коротковол­нового электромагнитного излучения (например, рентгеновского). Основные закономерности этого явления будут разобраны при рассмотрении фотоэлек­трического эффекта.

3. Вторичная электронная эмиссия - это испускание электронов поверхностью металлов, полупроводников или диэлек­триков при бомбардировке их пучком электронов. Вторичный электронный поток состоит из электронов, отраженных повер­хностью (упруго и неупруго отраженные электроны), и «истинно» вторичных элек­тронов - электронов, выбитых из металла, полупроводника или диэлектрика первич­ными электронами.

Отношение числа вторичных электро­нов n 2 к числу первичных п 1 , вызвавших эмиссию, называется коэффициентом вто­ричной электронной эмиссии:

=n 2 /n 1 .

Коэффициент б зависит от природы мате­риала поверхности, энергии бомбардиру­ющих частиц и их угла падения на поверх­ность. У полупроводников и диэлектриков б больше, чем у металлов. Это объясняется тем, что в металлах, где концентрация электронов проводимости велика, вторич­ные электроны, часто сталкиваясь с ними, теряют свою энергию и не могут выйти из металла. В полупроводниках и диэлектри­ках же из-за малой концентрации элек­тронов проводимости столкновения вто­ричных электронов с ними происходят гораздо реже и вероятность выхода вторич­ных электронов из эмиттера возрастает в несколько раз.

Для примера на рис. 154 приведена качественная зависимость коэффициента вторичной электронной эмиссии б от энер­гии Е падающих электронов для KCl. С увеличением энергии электронов б воз­растает, так как первичные электроны все глубже проникают в кристаллическую ре­шетку и, следовательно, выбивают больше вторичных электронов. Однако при некото­рой энергии первичных электронов 6 на­чинает уменьшаться. Это связано с тем, что с увеличением глубины проникновения первичных электронов вторичным все труднее вырваться на поверхность. Значе­ние  max для KCl достигает 12 (для чистых металлов оно не превышает 2).

Явление вторичной электронной эмис­сии используется в фотоэлектронных ум­ножителях (ФЭУ), применяемых для уси­ления слабых электрических токов. ФЭУ представляет собой вакуумную трубку с фотокатодом К и анодом А, между кото­рыми расположено несколько электро­дов- эмиттеров (рис.155). Электроны, вырванные с фотокатода под действием света, попадают на эмиттер Э 1 , пройдя ускоряющую разность потенциалов между К и Э 1 . Из эмиттера Э 1 выбивается  электронов. Усиленный таким образом

электронный поток направляется на эмит­тер Э2, и процесс умножения повторяется на всех последующих эмиттерах. Если ФЭУ содержит n эмиттеров, то на аноде А, называемом коллектором, получается уси­ленный в б" раз фотоэлектронный ток.

4. Автоэлектронная эмиссия - это эмиссия электронов с поверхности метал­лов под действием сильного внешнего электрического поля. Эти явления можно наблюдать в откачанной трубке, конфигу­рация электродов которой (катод - острие, анод - внутренняя поверхность трубки) позволяет при напряжениях при­мерно 10 3 В получать электрические поля напряженностью примерно 10 7 В/м. При постепенном повышении напряжения уже при напряженности поля у поверхности катода примерно 10 5 -10 6 В/м возникает слабый ток, обусловленный электронами, испускаемыми катодом. Сила этого тока увеличивается с повышением напряжения на трубке. Токи возникают при холодном катоде, поэтому описанное явление назы­вается также холодной эмиссией. Объяс­нение механизма этого явления возможно лишь на основе квантовой теории.

Определение работы выхода электрона из металла методом прямых Ричардсона

Приборы и принадлежности. Лабораторная панель, блок питания накала Б5-70, блок питания анода Б5-70, универсальный вольтметр В7-27.

Введение. Принцип работы большинства электровакуумных приборов основывается на движении потока электронов в вакуумированном пространстве между катодом и анодом. Источником электронов в условиях вакуума является катод. Причины, приводящие к испусканию электронов катодом различны. Можно назвать следующие виды электронной эмиссии:

1)термоэлектронная – испускание за счет нагревания катода до высокой температуры,

2)внешний фотоэффект – испускание при облучении светом,

3)вторичная эмиссия возникает при бомбардировке катода потоком первичных электронов с высокой энергией,

4)автоэлектронная эмиссия – «вырывание» электронов электрическим полем высокой напряженности.

Наиболее широко распространена термоэлектронная эмиссия, поэтому остановимся подробнее на этом явлении. Она имеет место для тел в твердом и жидком состоянии, температура которых существенно выше комнатной (1000…3000К).

М
еталлы, имеющие кристаллическое строение, содержат в узлах решетки положительные ионы, а валентные электроны атомов свободно распределены по всему объему образца, их называют также электронами проводимости. Слово «свободно» не следует понимать буквально, так как в действительности электроны взаимодействуют как с ионами, так и с остальными электронами, но равнодействующая всех сил, действующих на отдельный электрон, близка к нулю. В этом приближении электроны проводимости в металлах можно считать идеальным газом, правда, довольно высокой плотности – 1028…1029 м-3, в то время как концентрация молекул в газах при нормальных условиях составляет порядка 1025 м-3.

Электроны проводимости, хаотически движущиеся внутри металла, редко выходят за его пределы. Этому препятствует электрическое поле, действующее вблизи поверхности металла и создающее некоторый потенциальный барьер.

Рассмотрим силы, действующие на электрон, оказавшийся недалеко от поверхности со стороны вакуума. Если считать поверхность металла абсолютно гладкой, а металл – хорошо проводящим ток, то появление электрона приводит к наведению в толще металла заряда, являющегося «зеркальным изображением» электрона, т.е. положительного заряда, расположенного зеркально симметрично по отношению к поверхности (рис.1). Сила притяжения, действующая на электрон со стороны зеркального заряда, в СГС следующая:

Однако при расстояниях x ~ d , где d – межатомное расстояние, поверхность металла нельзя считать идеально гладкой, так как она представляет собой ионный слой его кристаллической решетки. Эту близлежащую область можно представить как двойной электрический слой. Возникновение одного связано с явлением термоэлектронной эмиссии, когда около нагретого металла образуется слой «электронной атмосферы», несущей отрицательный пространственный заряд, который препятствует дальнейшей эмиссии электронов. Второй слой – это поверхность металла, которую покинули некоторые электроны, от чего она приобрела положительный поверхностный заряд. Можно считать, что в этой области на электрон действует постоянная сила (как в поле плоского конденсатора).

Н

ужно потребовать, чтобы сила, действующая на электрон вблизи поверхности проводника, была непрерывна при переходе из области двойного слоя в более отдаленное пространство (рис.2,а ). Обе силы F 1 и F 2 направлены в сторону металла.

Чтобы перевести электрон из металла в вакуум, нужно совершить положительную работу против этих сил, которая пойдет на увеличение энергии электрона, оказавшегося вне металла.

,

Таким образом, если принять энергию электрона в вакууме равной нулю, то электрон в металле находится в потенциальной яме глубиной W 0 (рис.2,б ). Так как расстояние х , на котором энергия электрона изменяется от W 0 практически до нуля при переходе его из металла в вакуум, невелико и составляет несколько межатомных расстояний, то при макроскопическом рассмотрении можно говорить, что потенциальная энергия электрона на границе металл–вакуум изменяется скачком (кривая KMN на рис.3,а ) и форма потенциального барьера прямоугольная.

Согласно классической теории электропроводности при абсолютном нуле температуры потенциальная энергия всех электронов проводимости равна W 0 , а кинетическая равна нулю.

Согласно квантовой теории даже при абсолютном нуле энергия электронов не равна W 0 , электроны распределяются по энергетическим уровням в соответствии с принципом Паули, причем их энергия неодинакова и квантована. Это подтверждается опытами. Наибольшая энергия, которой обладает электрон на самом высоком занятом уровне при абсолютном нуле, называется энергией Фéрми – WF (рис.3,а ). Таким образом, чтобы извлечь электрон из металла, нужно затратить меньшую энергию, чем W 0 . Та наименьшая энергия, которую необходимо сообщить электрону, чтобы перевести его из металла в вакуум, называется работой выхода электрона А :

г

де – потенциал выхода электрона.

В настоящее время известно несколько методов определения работы выхода электронов, в том числе тот, который предлагается в данной работе – метод «прямых Ричардсона».

На рис.3,б показана функция распределения электронов проводимости в металле по энергиям. Величина f (W ) означает вероятность того, что электрон обладает указанным значением энергии W . При абсолютном нуле

f (W )=1, если W WF ,

f (W )=0, если W WF .

Таким образом, при данных условиях ни один электрон не имеет возможности покинуть металл (штриховая линия на рисунке).

Если температура металла высокая, порядка тысячи кельвинов, то появляется отличная от нуля вероятность, что часть электронов приобретает энергию, превышающую потенциальный барьер (сплошная кривая на рис.3,б ). Их энергия становится достаточной, чтобы выйти из потенциальной ямы и оказаться вне металла. Чем выше температура, тем количество таких электронов становится все больше и больше. Данная кривая описывается функцией распределения Ферми-Дирака

От количества эмиттированных электронов зависит плотность тока насыщения js в вакуумном диоде, которая определяется формулой Ричардсона-Дэшмана:

где В – константа, которая теоретически для всех металлов одинакова, и данные опытов показывают, что она зависит от материала катода не сильно.

Формула (6) предсказывает сильную зависимость тока насыщения от температуры катода. Если ее прологарифмировать, то возникает возможность экспериментального определения работы выхода электронов из металла.

. (7)

График функции ln(js / T 2) от 1/ T представляет собой прямую, угловой коэффициент которой связан с работой выхода А .

Описание установки. Принципиальная схема экспериментальной установки приведена на рис. 4. В работе применяется вакуумная электронная лампа ГУ-4 – триод прямого накала с вольфрамовым катодом. В данной работе триод включен по так называемой диодной схеме, где сетка и анод соединены между собой. Лампа укреплена на лабораторной панели, электроды ее соединены с соответствующими клеммами.

Электрическая цепь состоит из двух контуров – накального и анодного, в каждом есть свой источник питания и свои измерительные приборы. В анодный контур входит источник ИП-2 (Б5-48), накал лампы питается от ИП-1 (Б5-70).

Подготовка к измерениям. 1.На источнике питания Б5-70 установите

ручку регулировки напряжения“U” – в крайнее левое положение,

ручку регулировки тока “I” – в крайнее правое положение,

переключатель ВНЕШН-ВНУТР – в положение ВНУТР,

переключатель V/A – в положение “A”– на табло будет ток в амперах.

2.У источника Б5-48 на декадном переключателе напряжения выставьте все нули, на переключателе тока установите 0,1 А.

3.На вольтметре В7-27 переключатель пределов установите в положение 1 мA.

И

змерения.
1.Соберите электрическую цепь. Это удобнее сделать по блок-схеме (рис.5), так как некоторые измерительные приборы и регуляторы, изображенные на принципиальной схеме (рис.4), входят в состав источников питания и заботиться об их присоединении не надо.

2.Предложите препо-давателю проверить собранную цепь.

3.Включите блок питания цепи накала ИП1 (левый на рис.5). Поворачивая ручку регулировки “U”, установите ток накала лампы 1,2 А по встроенному цифровому измерительному прибору, прогрейте лампу не менее 5 минут.

4.Включите универсальный вольтметр В7-27.

5.Включите второй блок питания ИП2 – источник анодного напряжения. Изменяя напряжение от 1 В до 15 В через 1 В, измерьте анодный ток лампы, который показывает прибор В7-27. Результаты запишите в табл.1.

6
.В блоке ИП1 переключатель V/A поставьте в положение “V” и снимите его показания – напряжение на нити накала лампы, впишите его в табл.1.

7.Такие же измерения, как в п. 5-6, проведите при токах накала 1,3 и 1,4 А.

Обработка результатов. 1.Постройте вольт-амперные характеристики лампы (зависимость Ia от Ua ) при трех значениях тока накала. Из графиков определите три значения тока насыщения Is 1 , Is 2 , Is 3 при соответствующих значениях тока накалах. Результаты запишите в табл.2.

Таблица 1

I н1= 1,2 А

U н1=

I н2= 1,3 А

U н2=

I н3= 1,4 А

U н3=

2.Определите плотность тока насыщения по формуле js = Is / S . Площадь поверхности катода S данной лампы 0,157 см2 .

3.По формуле P = I н U н/ S вычислите плотность потока энергии с катода лампы в единицах Вт/см2. Такая энергия расходуется единицей поверхности в единицу времени на тепловое излучение и на эмиссию электронов. Энергией, унесенной в окружающее пространство за счет теплопроводности вакуума и элементами крепления нити, пренебрегают.

Таблица 2

I н, А

ln(js/T2)

1/ T

4.Пользуясь данными табл.3, в которой приведена плотность потока энергии с вольфрамового катода в зависимости от его температуры, определите температуру катода при трех мощностях нагрева.

Таблица 3

Р ,Вт/см2

Р ,Вт/см2

Р ,Вт/см2

Р ,Вт/см2

5.Заполните остальные столбцы табл.2.

6.Постройте график зависимости ln(js / T 2) от 1/Т (т.н. прямая Ричардсона).

7.Определите по графику угловой коэффициент прямой, который, согласно выражению (7), равен –А/ k .

8.Найдите работу выхода электрона из вольфрамового катода, выразив ее в эВ. Сравните найденное значение с табличным, приводимом в справочной литературе.

Контрольные вопросы

    Что называется явлением термоэлектронной эмиссии?

    Почему поверхность металла представляет для электронов потенциальную яму?

    Какова должна быть кинетическая энергия электрона внутри металла, чтобы он мог покинуть металл?

    Что такое уровень Ферми?

    Дайте определение работы выхода электрона из металла.

    Почему ток насыщения увеличивается с ростом температуры катода?

    Объясните качественно ход вольт-амперной характеристики вакуумного диода.

    Зачем в работе по снятию вольт-амперной характеристики диода измеряется также ток и напряжение накала?

    Какой экспериментальный прием используется в данной работе с целью определения работы выхода электрона из металла?

    Если Вы снимали вольт-амперные характеристики вакуумного диода в работе №319, то можно ли по полученным там данным определить работу выхода электрона из катода используемого в ней диода?

    Известно, что на участке насыщения вольт-амперной характеристики анодный ток не остается постоянным, а несколько возрастает по мере увеличения анодного напряжения (эффект Шоттки). С чем это связано?

1.Калашников С.Г. Электричество. М.: Наука, §154-158.

2.Сивухин Д.В. Общий курс физики. Т.3. М.: Наука, 1977. §101.

3.Физический практикум. Электричество и оптика. /Под ред. В.И.Ивероновой. М.: Наука, 1968. С.67.

4.Савельев И.В. Курс общей физики. Т.3. М.: Наука, 1979. §51-52, 61.

5.Методы физических измерений. /Под ред. Р.И.Солоухина. Новосибирск: Наука, 1975. С.134-136.

6.Лабораторный практикум «Электрические свойства вещества. Движение частиц в электрическом поле». /Под ред.В.А.Безуса. М.: МИФИ, 1979.

1) Формула работа выхода электронов

В металлах имеются электроны проводимости, образующие электронный газ и участвующие в тепловом движении. Так как электроны проводимости удерживаются внутри металла, то, следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Чтобы электрон мог выйти из металла за его пределы, должна быть совершена определенная работа А против этих сил, которая получила название работа выхода электрона из металла. Эта работа, естественно, различна для разных металлов.

Потенциальная энергия электрона внутри металла постоянна и равна:

W p = -eφ, где j – потенциал электрического поля внутри металла.

При переходе электрона через поверхностный электронный слой потенциальная энергия быстро уменьшается на величину работы выхода и становится вне металла равной нулю. Распределение энергии электрона внутри металла можно представить в виде потенциальной ямы.

В рассмотренной выше трактовке работа выхода электрона равна глубине потенциальной ямы, т.е.

Этот результат соответствует классической электронной теории металлов, в которой предполагается, что скорость электронов в металле подчиняется закону распределения Максвелла и при температуре абсолютного нуля равна нулю. Однако в действительности электроны проводимости подчиняются квантовой статистике Ферми-Дирака, согласно которой при абсолютном нуле скорость электронов и соответственно их энергия отлична от нуля.

Максимальное значение энергии, которой обладают электроны при абсолютном нуле, называется энергией Ферми E F . Квантовая теория проводимости металлов, основанная на этой статистике, дает иную трактовку работы выхода. Работа выхода электрона из металла равна разности высоты потенциального барьера eφ и энергии Ферми.

A вых = eφ" - E F

где φ" – среднее значение потенциала электрического поля внутри металла.

2)Работа выхода электронов из металла - работа, которую нужно затратить для удаления электрона из металла в вакуум. Работа выхода зависит от химической природы металлов и от чистоты их поверхности. Подобрав определенным образом покрытие поверхности, можно значительно изменить работу выхода.

Работа выхода выражается в электрон-вольтах (эВ): 1эВ равен работе, которую совершают силы поля при перемещении элементарного электрического заряда между точками разность потенциалов между которыми равна 1В. Так как e 1,610–19 Кл, то 1эВ=1,610–19 Дж.



Электронная эмиссия - явление испускания электронов из металлов при сообщении электронам энергии, равной или большей работы выхода.

1. Термоэлектронная эмиссия - испускание электронов нагретыми металлами. Пример использования – электронные лампы.

2. Фотоэлектронная эмиссия - эмиссия электронов из металла под действием электромагнитного излучения. Пример использования - фотодатчики.

3. Вторичная электронная эмиссия - испускание электронов поверхностью металлов, полупроводников или диэлектриков при бомбардировке их пучком электронов. Отношение числа вторичных электронов n 2 к числу первичных n 1 , вызвавших эмиссию, называется коэффициентом вторичной электронной эмиссии :n 2 n 1 . Пример использования - фотоэлектронные умножители.

4. Автоэлектронная эмиссия - эмиссия электронов с поверхности металлов под действием сильного внешнего электрического поля.

5 Вопрос. Электрический ток в вакууме (объяснение ВАХ вакуумного диода).

Что такое вакуум?
- это такая степень разрежения газа, при которой соударений молекул практически нет;

Электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность;
- создать эл.ток в вакууме можно, если использовать источник заряженных частиц;
- действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.

Термоэлектронная эмиссия
- это испускание электронов твердыми или жидкими телами при их нагревании до температур, соответствующих видимому свечению раскаленного металла.
Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако.
В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него (т.к. электрод при потере электронов заряжается положительно).
Чем выше температура металла, тем выше плотность электронного облака.



Вакуумный диод
Электрический ток в вакууме возможен в электронных лампах.
Электронная лампа - это устройство, в котором применяется явление термоэлектронной эмиссии.

Вакуумный диод - это двухэлектродная (А- анод и К - катод) электронная лампа.
Внутри стеклянного баллона создается очень низкое давление


Н - нить накала, помещенная внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с + источника тока, а катод с -, то в цепи протекает
постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью.
Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая эл.ток в вакууме.

Вольтамперная характеристика вакуумного диода.

При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и электрический ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения.
Вакуумный диод используется для выпрямления переменного тока.
Ток на входе диодного выпрямителя:


Ток на выходе выпрямителя:

Электронные пучки
- это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах.
Свойства электронных пучков:
- отклоняются в электрических полях;
- отклоняются в магнитных полях под действием силы Лоренца;
- при торможении пучка, попадающего на вещество возникает рентгеновское излучение;
- вызывает свечение (люминисценцию) некоторых твердых и жидких тел (люминофоров);
- нагревают вещество, попадая на него.

Электронно - лучевая трубка (ЭЛТ)
- используются явления термоэлектронной эмиссии и свойства электронных пучков.

ЭЛТ состоит из электронной пушки, горизонтальных и вертикальных отклоняющих
пластин-электродов и экрана.
В электронной пушке электроны, испускаемые подогревным катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами.
Существуют два вида трубок:
1) с электростатическим управлением электронного пучка (отклонение эл. пучка только лишь эл.полем);
2) с электромагнитным управлением (добавляются магнитные отклоняющие катушки).
Основное применение ЭЛТ:
кинескопы в телеаппаратуре;
дисплеи ЭВМ;
электронные осциллографы в измерительной технике.

6 Вопрос. Электрический ток в газах (ВАХ газового разряда). Несамостоятельный и самостоятельный разряд.

В обычных условиях газ - это диэлектрик, т.е. он состоит из нейтральных атомов и молекул и не содержит свободных носителей эл.тока.
Газ-проводник - это ионизированный газ. Ионизированный газ обладает электронно-ионной проводимостью.

Воздух является диэлектриком в линиях электропередач, в воздушных конденсаторах, в контактных выключателях.

Воздух является проводником при возникновении молнии, электрической искры, при возникновении сварочной дуги.

Ионизация газа


- это распад нейтральных атомов или молекул на положительные ионы и электроны путем отрыва электронов от атомов. Ионизация происходит при нагревании газа или воздействия излучений (УФ, рентген, радиоактивное) и объясняется распадом атомов и молекул при столкновениях на высоких скоростях.

Газовый разряд
- это эл.ток в ионизированных газах.
Носителями зарядов являются положительные ионы и электроны. Газовый разряд наблюдается в газоразрядных трубках (лампах) при воздействии электрического или магнитного поля.

Рекомбинация заряженных частиц


- газ перестает быть проводником, если ионизация прекращается, это происходит в следствие рекомбинации (воссоединения противоположно заряженных частиц).

Существует самостоятельный и несамостоятельный газовый разряд.

Несамостоятельный газовый разряд
- если действие ионизатора прекратить, то прекратится и разряд.

Когда разряд достигает насыщения - график становится горизонтальным. Здесь электропроводность газа вызвана лишь действием ионизатора.

Самостоятельный газовый разряд
- в этом случае газовый разряд продолжается и после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации (= ионизации эл. удара); возникает при увеличении разности потенциалов между электродами (возникает электронная лавина).
Несамостоятельный газовый разряд может переходить в самостоятельный газовый разряд при Ua = Uзажигания.

7 Вопрос. Механизм возникновения самостоятельного газового разряда.

Чтобы разряд стал самостоятельным, каждый вырванный с катода электрон в результате цепочки взаимодействий должен вырвать с катода по крайней мере еще 1 электрон. Вспомним, что при ионизации атома электроном помимо свободного электрона возникает еще и ион, который движется под действием поля в противоположном электронам направлении – к катоду. В результате столкновения иона с катодом с последнего может быть эмитирован электрон (этот процесс называется вторичной электронной эмиссией ). Сам механизм соответствует темному самостоятельному разряду . То есть при таких условиях не происходит генерация излучения. Падающий характер этого участка объясняется тем, что при больших токах нужны меньшие энергии электронов для сохранения самостоятельности разряда и, следовательно, меньшие ускоряющие поля.

Типы самостоятельного разряда. Техническое применение
1. Тлеющий разряд. Применяется в газосветных трубках, неоновых лампах, циф­ровых индикаторах, лампах дневного света, ртутных лампах низкого давления.
a. Несветящаяся часть, прилегающая к катоду, наз. темным катодным пространством, b. Светящийся столб газа, заполняющий остальную часть, наз. анодным положительным столбом. При определенных давлениях анодный столб распадается на отдельные слои, разделенные темными промежутками (страты). Причиной ионизации газа в тлеющем разряде является ударная ионизация и выбивание электронов из катода положительными ионами.
2. Дуговой разряд. Применяется в ртутных лампах высокого давления, источниках света, при сварке металлов, в электроплавильных печах, при электролизе расплавов, в электропечах.
3. Коронный разряд Высокая напряженность. Используют в электрофиль­трах для очистки газов от при­месей твердых частиц. Применяется в счетчиках заряженных частиц Гейгера-Мюллера. Громоотвод. Отрица­тельное явление: вызывает утеч­ку энергии на высоковольтных линиях.
4. Искровой разряд Высокое напряжение. Применяется при обработке металлов. Молния: U=10 8 В,I=10 5 А, продолжительность 10 -6 с, диаметр канала 10 - 20 см.

РАБОТА ВЫХОДА ЭЛЕКТРОНА ИЗ МЕТАЛЛА И ПОЛУПРОВОДНИКА

Положительные ионы, образующие решетку металла, создают внутри него электрическое поле с положительным периодически изменяющимся потенциалом (рис. 5.1). В грубом приближении изменением потенциала принебрегают и считают его одинаковым во всех точках металла и равным φ 0 (рис. 8.1, а).

Свободный электрон, находящийся в таком поле, обладает отрицательной потенциальной энергией . На рис. 8.1, б представлено изменение потенциальной энергии электрона (при переходе) из металла в вакуум. В вакууме
П = 0, в металле П 0 = -е φ 0 . Это изменение, хотя и носит характер скачка, но происходит на расстоянии d , по порядку величины, равном нескольким параметрам решетки. На рис. 8.1, б видно, что металл представляет для электрона потенциальную яму. Покинуть металл удается только тем электронам, энергия которых достаточна для преодоления потенциального барьера, имеющегося на поверхности. Силы, создающие этот барьер, имеют следующее происхождение. Удаление электрона от наружного слоя положительных ионов решетки приводит к возникновению в месте, которое покинул электрон, избыточного элементарного положительного заряда. Кулоновское взаимодействие с этим зарядом заставляет электрон вернуться обратно. Таким образом, отдельные электроны все время покидают металл, удаляются от поверхности на несколько межатомных расстояний и возвращаются обратно. В результате над поверхностью металла существует тонкий отрицательный слой из электронов (рис. 8.2).

Электроны над поверхностью металла и положительные ионы вблизи поверхности образуют двойной электрический слой, в котором на электрон действуют силы, направленные внутрь металла. Работа, совершаемая против этих сил при переходе электрона из металла в вакуум, идет на увеличение его потенциальной энергии. Таким образом, потенциальная энергия валентных электронов внутри металла меньше, чем в вакууме, на величину П 0 (рис. 8.1, б). Полная энергия электрона в металле слагается из потенциальной и кинетической. При абсолютном нуле температуры значения кинетической энергии электронов проводимости заключены от нуля до совпадающей с уровнем Ферми максимальной энергией (§ 6.1). На рис. 8.1, б энергетические уровни валентной зоны вписаны в потенциальную яму. Для удаления из металла разным электронам необходимо сообщить неодинаковую энергию (рис. 8.1, б). Например, электрону, находящемуся на нижнем уровне валентной зоны для выхода из металла потребуется энергия П 0 ; электрону, находящемуся на уровне Ферми, достаточна энергия П 0 – Е F .

Наименьшая энергия, которую необходимо сообщитьэлектрону для выхода из твердого тела в вакуум, называется работой выхода. Таким образом, работа выхода электрона из металла определяется выражением

, (8.1)

где φ - величина, называемая потенциалом выхода. Выражение (8.1) получено в предположении, что температура металла равна 0К. При температуре, отличной от абсолютного нуля, на уровнях, расположенных выше уровня Ферми, имеется некоторое число электронов (рис. 6.4) и определение работы выхода по формуле (8.1) становится неточным. Однако, если удалить электрон с уровня, расположенного ниже уровня Ферми, то равновесие электронов в металле нарушается. Для восстановления равновесия произойдет переход электрона с более высокого уровня на освободившийся, и металл нагреется за счет выделившейся при этом энергии. Затраченную в этом случае работу нельзя считать работой выхода, так как часть ее пойдет на нагревание металла. Если удалить электрон с уровня, расположенного выше уровня Ферми, то для восстановления равновесия за счет внутренней энергии металла будет переброшен электрон из ниже лежащих уровней на освободившийся. В результате металл охладится. Затраченная в этом случае работа будет меньше работы выхода, так как используется часть внутренней энергии металла. Учитывая приведенные выше рассуждения, определение работы выхода по формуле (8.1) распространяют на любые температуры. Работу выхода электрона из металла, отсчитанную от уровня Ферми, называют изотермической.

Работа выхода электрона из металла зависит от частоты его поверхности и наличия на ней адсорбированных атомов. Так, например, нанесение на поверхность вольфрамового слоя окисла щелочно-земельного металла снижает работу выхода с 4,5 ЭВ (для чистого вольфрама) до 1,5-2 ЭВ.

Работу выхода электрона из полупроводника также отсчитывают от уровня Ферми, несмотря на то, что для удаления электрона из зоны проводимости, валентной зоны и с примесных уровней требуется различная энергия (рис. 8.3)

Однако и в этом случае можно показать, что если удалить электрон с уровня, расположенного выше уровня Ферми, то полупроводник охладится. Если удалить электрон с уровня, находящегося ниже уровня Ферми, полупроводник нагреется. И только в том случае, когда одновременно удаляются электроны с уровней, расположенных выше и ниже уровня Ферми, причем в таком соотношении, чтобы их энергия в среднем равнялась энергии Ферми, температура полупроводника останется неизменной.

Как показывает опыт, свободные электро­ны при обычных температурах практиче­ски не, покидают металл. Следовательно, в поверхностном слое металла должно быть задерживающее электрическое поле, препятствующее выходу электронов из ме­талла в окружающий вакуум. Работа, ко­торую нужно затратить для удаления электрона из металла в вакуум, называет­ся работой выхода. Укажем две вероятные причины появления работы выхода:

1. Если электрон по какой-то причине удаляется из металла, то в том месте, которое электрон покинул, возникает из­быточный положительный заряд и элект­рон притягивается к индуцированному им самим положительному заряду.

2. Отдельные электроны, покидая ме­талл, удаляются от него на расстояния порядка атомных и создают тем самым над поверхностью металла «электронное облако», плотность которого быстро убы­вает с расстоянием. Это облако вместе с наружным слоем положительных ионов решетки образует двойной электрический слой, поле которого подобно полю плоско­го конденсатора. Толщина этого слоя рав­на нескольким межатомным расстояниям (10 -10 - 10 -9 м). Он не создает элек­трического поля во внешнем пространстве, но препятствует выходу свободных элек­тронов из металла.

Таким образом, электрон при вылете из металла должен преодолеть задержи­вающее его электрическое поле двойного слоя. Разность потенциалов Dj в этом слое, называемая поверхностным скачком потенциала, определяется работой выхода (А) электрона из металла:

где е - заряд электрона. Так как вне двойного слоя электрическое поле отсут­ствует, то потенциал среды равен нулю, а внутри металла потенциал положителен и равен Dj. Потенциальная энергия сво­бодного электрона внутри металла равна - еDj и является относительно вакуума отрицательной. Исходи из этого можно

Работа выхода выражается в элект­рон-вольтах (эВ): 1 эВ равен работе, со­вершаемой силами поля при перемещении элементарного электрического заряда (за­ряда, равного заряду электрона) при про­хождении им разности потенциалов в 1 В. Так как заряд электрона равен 1,6 l0 -19 Кл, то 1 эВ = 1,6 10 -19 Дж.

Работа выхода зависит от химической природы металлов и от чистоты их по­верхности и колеблется в пределах не­скольких электрон-вольт (например, у ка­лия Л=2,2 эВ, у платины A = б,3 эВ). Подобрав определенным образом покры­тие поверхности, можно значительно уменьшить paботу выхода. Например, если нанести на поверхность вольфрама =4,5 эВ) слой оксида щелочно-земельного металла (Са, Sr, Ba), то работа выхода снижается до 2 эВ.