Украшения. Аксессуары. Дизайн ногтей. Цвета. Нанесение. Ногти

Как повысить напряжение с 3.7 до 5. Как повысить постоянное и переменное напряжение

После моих статьей маломощных инверторов для зарядки мобильных устройств, на форуме поступили личные сообщения, с просьбой дать схему инвертора 3,7-5 Вольт. Недолго поискав в интернете понял, что нормальных схем нет, все, что имелось, было собрано на специализированных драйверах - многим пользователям (особенно новичкам) они недоступны. Поэтому решил создать, пожалуй самую простую схему инвертора, который способен заряжать все портативные электронные устройства со встроенным литий-ионным аккумулятором 3,7Вольт.

Универсальный номинал выходного напряжения - 5 Вольт дает возможность зарядить все известные мобильные телефоны, плееры и планшетные компьютеры, иными словами выходное напряжение было выбрано 5 Вольт.
Основные параметры таковы
Входное напряжение 3.5-6 Вольт
Ток потребления при подключенном телефоне не более 500мА
Выходное напряжение 5 Вольт
Выходной ток не более 80 мА

Позже провёл некоторые эксперименты, в следствии удалось получить выходной ток до 120мА при потреблении 650 мА, хотя схема может отдавать гораздо больше, для этого нужно увеличить сечение проводов в обеих обмотках, но при этом потребление резко возрастает и КПД преобразователя падает.

В качестве выпрямителя желательно использовать диод Шоттки или любые импульсные диоды с рабочим напряжением более 20 Вольт и током выше 500мА, из распространенных подходят FR107/207 и любые другие, с указанными параметрами.
Хоть и мощность такого инвертора не велика, но телефон заряжается довольно быстро, почти как от штатного зарядника.
На выходе зарядного инвертора имеется также электролитический конденсатор для сглаживания помех после выпрямителя, после этого напряжение подается на линейный стабилизатор напряжения выполненный на микросхеме 7805, на выходе которого получаем стабильное напряжение 5 Вольт, перед микросхемой стабилитрон в данном случае не нужен, поскольку выходное напряжение после диода не превышает 15 Вольт.
Аккумулятор в моем случае использован от планшетного компьютера с емкостью 2000мА/ч, емкости хватает на 4-5 часов непрерывной работы инвертора.
Потом решил дополнить зарядное устройство кремниевым фотоэлементом. Такой модуль отдает напряжение до 9 Вольт при максимальном токе 50мА, даже при пасмурной погоде напряжение на выходе модуля не менее 7 Вольт при токе 30-35мА. Модуль не самый мощный, но как вариант, для подзарядки аккумулятора вполне подходит.
Инвертор был разработан специально для начинающих радиолюбителей, у которых появился интерес к радиоаппаратуре совсем не давно, уверен, любой сможет собрать такую зарядку, простая, дешевая и полезная вещица, работает безотказно и не требует никакой наладки.

С помощью данного преобразователя напряжения можно получить 220 вольт от аккумуляторной батареи, напряжением 3.7 вольт. Схема не сложная и все детали доступы, этим преобразователям можно запитать энергосберегающую или светодиодную лампу. К сожалению более мощные приборы подключить не получится, так как преобразователь маломощный и больших нагрузок не выдержит.

Итак, для сборки преобразователя нам понадобится:

  • Трансформатор от старого зарядного устройства для телефона.
  • Транзистор 882P или его отечественные аналоги КТ815, КТ817.
  • Диод IN5398, аналог КД226 или вообще любой другой рассчитанный на обратный ток до 10 вольт средней или большой мощности.
  • Резистор (сопротивление) на 1 кОм.
  • Макетная плата.

Еще естественно понадобится паяльник с припоем и флюсом, кусачки, провода и мульти метр (тестер). Можно конечно изготовить и печатную плату, но для схемы из нескольких деталей не стоит тратить время на разработку разводки дорожек их прорисовку и травление фольгированного текстолита или гетинакса. Проверяем трансформатор. Плата старого зарядного устройства.

Аккуратно выпаиваем трансформатор.


Дальше нам надо проверить трансформатор и найти выводы его обмоток. Берем мультиметр, переключаем его в режим омметра. По очереди проверяем все выводы, находим те которые парой «звонятся» и записываем их сопротивления.
1. Первая 0,7 Ом.


2. Вторая 1,3 Ом.


3. Третья 6,2 Ом.


Та обмотка, у которой наибольшее сопротивление была первичной, на нее подавалось 220 В. В нашем устройстве она будет вторичной, то есть выходом. С остальных снималось пониженное напряжение. У нас они будут служить как первичная (та, которая с сопротивлением 0,7 ом) и часть генератора (с сопротивлением 1,3). Результаты замеров у разных трансформаторов могут отличаться, нужно ориентироваться на их соотношение между собой.

Схема устройства


Как видите она простейшая. Для удобства мы пометили сопротивления обмоток. Трансформатор не может преобразовывать постоянный ток. Поэтому на транзисторе и одной из его обмоток собран генератор. Он подает пульсирующее напряжение от входа (батареи) на первичную обмотку, напряжение около 220 вольт снимается с вторичной.

Собираем преобразователь

Берем макетную плату.


Устанавливаем трансформатор на нее. Выбираем резистор в 1 килоом. Вставляем его в отверстия платы, рядом с трансформатором. Загибаем выводы резистора так чтобы соединить их с соответствующими контактами трансформатора. Припаиваем его. Удобно при этом закрепить плату в каком ни будь зажиме, как на фото, чтобы не возникала проблема недостающей «третьей руки». Припаянный резистор. Лишнюю длину вывода обкусываем. Плата с обкусанными выводами резистора. Дальше берем транзистор. Устанавливаем его на плату с другой стороны трансформатора, так как на скриншоте (расположения деталей я подобрал так, чтобы было удобнее их соединять согласно принципиальной схеме). Изгибаем выводы транзистора. Припаиваем их. Установленный транзистор. Берем диод. Устанавливаем его на плату параллельно транзистору. Припаиваем. Наша схема готова.



Припаиваем провода для подключения постоянного напряжения (DC input). И провода для съема пульсирующего высокого напряжения (AC output).


Для удобства провода на 220 вольт берем с «крокодилами».


Наше устройство готово.

Тестируем преобразователь

Для того чтобы подать напряжение выбираем аккумулятор на 3-4 вольта. Хотя можно использовать и любой другой источник питания.


Припаиваем провода входа низкого напряжения к нему, соблюдая полярность. Замеряем напряжение на выходе нашего устройства. Получается 215 вольт.


Внимание. Не желательно прикасаться к деталям при подключенном питании. Это не столь опасно, если у вас нет проблем со здоровьем, особенно с сердцем (хотя две сотни вольт, но ток слабый), но неприятно «пощипать» может.
Завершаем тестирование, подключив люминесцентную энергосберегающую лампу на 220 вольт. Благодаря «крокодилам» это несложно сделать без паяльника. Как видите, лампа горит.


Наше устройство готово.
Совет. Увеличить мощность преобразователя можно установив транзистор на радиатор.
Правда емкости аккумулятора хватит не на долго. Если вы собираетесь постоянно использовать преобразователь, то выберите более емкую батарею и сделайте для него корпус.

Представляю обзор микромощного преобразователя напряжения, который мало на что сгодится.

Собран довольно неплохо, размер компактный 34х15х10мм




Заявлено:
Входное напряжение: 0.9-5В
С одной батареи АА выходной ток до 200мА
С двух батарей АА выходной ток 500 ~ 600мA
КПД до 96%
Реальная схема преобразователя


В глаза сразу бросается очень малая ёмкость входного конденсатора - всего-то 0.15мкФ. Обычно ставят больше раз в 100, видимо наивно рассчитывают на низкое внутреннее сопротивление батареек:) Ну поставили такой и бог с ним, при необходимости можно и поменять - себе сразу поставил 10мкФ. Снизу на фото валяется родной конденсатор.


Габариты дросселя также весьма невелики, что заставляет призадуматься насчёт правдивости заявленных характеристик
На входе преобразователя подключен красный светодиод, который начинает светиться при входном напряжении более 1,8В

Проверку проводил для следующих стабилизированных входных напряжений:
1,25В - напряжение Ni-Cd и Ni-MH аккумулятора
1,5В - напряжение одного гальванического элемента
3,0В - напряжение двух гальванических элементов
3,7В - напряжение Li-Ion аккумулятора
При этом нагружал преобразователь до падения напряжения до разумных 4,66В

Напряжение холостого хода 5,02В
- 0,70В - минимальное напряжение, при котором преобразователь начинает работать на холостом ходу. Светодиод при этом естественно не светится - напряжения не хватает.
- 1,25В ток холостого хода 0,025мА, максимальный выходной ток всего 60мА при напряжении 4,66В. Входной ток при этом 330мА, КПД около 68%. Светодиод при таком напряжении естественно не светится.


- 1,5В ток холостого хода 0,018мА, максимальный выходной ток 90мА при напряжении 4,66В. Входной ток при этом 360мА, КПД около 77%. Светодиод при таком напряжении естественно не светится


- 3,0В ток холостого хода 1,2мА (потребляет в основном светодиод), максимальный выходной ток 220мА при напряжении 4,66В. Входной ток при этом 465мА, КПД около 74%. Светодиод при таком напряжении светится нормально.


- 3,7В ток холостого хода 1,9мА (потребляет в основном светодиод), максимальный выходной ток 480мА при напряжении 4,66В. Входной ток при этом 840мА, КПД около 72%. Светодиод при таком напряжении светится нормально. Преобразователь начинает незначительно греться.


Для наглядности, свёл результаты в таблицу.


Дополнительно при входном напряжении 3,7В проверил зависимость КПД преобразования от тока нагрузки
50мА - КПД 85%
100мА - КПД 83%
150мА - КПД 82%
200мA - КПД 80%
300мA - КПД 75%
480мА - КПД 72%
Как несложно заметить, чем меньше нагрузка, тем выше КПД
До заявленных 96% сильно не дотягивает

Пульсации выходного напряжения при нагрузке 0,2А


Пульсации выходного напряжения при нагрузке 0,48А


Как нетрудно заметить, на максимальном токе амплитуда пульсаций очень велика и превышает 0,4В.
Скорее всего это происходит из-за выходного конденсатора небольшой ёмкости с высоким ESR (измерил 1,74Ом)
Рабочая частота преобразования около 80кГц
Запаял дополнительно керамику 20мкФ на выход преобразователя и получил снижение пульсаций при максимальном токе в 5 раз!




Вывод: преобразователь является весьма маломощным - это обязательно следует учитывать, выбирая его для питания Ваших устройств

Планирую купить +20 Добавить в избранное Обзор понравился +37 +69

Далеко не все слышали о том, что литий-ионные батареи типа АА, имеют не только стандартные 3,7 вольта, но есть такие модели что дают обычных полтора, как в никель кадмиевых. Да, сама химия банок не позволяет создавать 1,5-вольтовые ячейки, поэтому внутри есть понижающий стабилизатор. Таким образом получается классическая перезаряжаемая батарейка, на стандартное для большинства приборов и, главное, игрушек, напряжение. Эти АКБ имеют то преимущество, что очень быстро заряжаются и более мощные по ёмкости. Поэтому можно смело предположить рост популярности таких элементов питания. Давайте осмотрим тестовый образец и разберём его начинку.

Сама батарея выглядит как обычные АА элементы, за исключением верхней положительной клеммы. Есть сверху утопленное кольцо вокруг неё, что обеспечивает прямое подключение к Li-ion ячейке для .

После отрывания этикетки, мы встретились с простым стальным корпусом. Желая разобрать ячейку с минимальным риском короткого замыкания внутри, использовался маленький труборез для аккуратной разборки сварного шва.

Печатная плата, которая выдаёт из 3,7 - 1,5 вольта, находится внутри крышки.

В этом преобразователе использована , 1.5 МГц инвертор DC-DC, чтобы обеспечить 1,5 В на выходе. Судя по даташиту, это полностью интегрированный конвертер со всеми силовыми полупроводниковыми компонентами. Преобразователь рассчитан на 2,5-5,5 вольт входа, то есть в пределах рабочего диапазона Li-ion ячейки. Кроме того, он имеет собственный ток потребления всего 20 микроампер.

Для аккумулятора предусмотрена схема защиты, расположенная на гибкой плате, которая окружает Li-ion ячейку. Она использует микросхему XB3633A , которая, как и инвертор, является полностью интегрированным устройством; нет внешних МОП-транзисторов для отключения ячейки от остальной схемы. В общем со всей этой сопутствующей электроникой, из литиевого элемента получилась обычная полноценная батарейка 1,5 В.