Украшения. Аксессуары. Дизайн ногтей. Цвета. Нанесение. Ногти

Схема регулируемого зарядного устройства по первичной обмотке. Самодельное зарядное устройство для акб

С микросхемой NE555 (аналог КР1006) знаком каждый радиолюбитель. Её универсальность позволяет конструировать самые разнообразные самоделки: от простого одновибратора импульсов с двумя элементами в обвязке до многокомпонентного модулятора. В данной статье будет рассмотрена схема включения таймера в режиме генератора прямоугольных импульсов с широтно-импульсной регулировкой.

Схема и принцип её работы

С развитием мощных светодиодов NE555 снова вышла на арену в роли регулятора яркости (диммера), напомнив о своих неоспоримых преимуществах. Устройства на её основе не требуют глубоких знаний электроники, собираются быстро и работают надёжно.

Известно, что управлять яркостью светодиода можно двумя способами: аналоговым и импульсным. Первый способ предполагает изменение амплитудного значения постоянного тока через светодиод. Такой способ имеет один существенный недостаток - низкий КПД. Второй способ подразумевает изменение ширины импульсов (скважности) тока с частотой от 200 Гц до нескольких килогерц. На таких частотах мерцание светодиодов незаметно для человеческого глаза. Схема ШИМ-регулятора с мощным выходным транзистором показана на рисунке. Она способна работать от 4,5 до 18 В, что свидетельствует о возможности управления яркостью как одного мощного светодиода, так и целой светодиодной лентой. Диапазон регулировки яркости колеблется от 5 до 95%. Устройство представляет собой доработанную версию генератора прямоугольных импульсов. Частота этих импульсов зависит от ёмкости C1 и сопротивлений R1, R2 и определяется по формуле: f=1/(ln2*(R1+2*R2)*C1), Гц

Принцип действия электронного регулятора яркости заключается в следующем. В момент подачи напряжения питания начинает заряжаться конденсатор по цепи: +Uпит – R2 – VD1 –R1 –C1 – -U пит. Как только напряжение на нём достигнет уровня 2/3U пит откроется внутренний транзистор таймера и начнется процесс разрядки. Разряд начинается с верхней обкладки C1 и далее по цепи: R1 – VD2 –7 вывод ИМС – -U пит. Достигнув отметки 1/3U пит транзистор таймера закроется и C1 вновь начнет набирать ёмкость. В дальнейшем процесс повторяется циклически, формируя на выводе 3 прямоугольные импульсы.

Изменение сопротивления подстроечного резистора приводит к уменьшению (увеличению) времени импульса на выходе таймера (вывод 3), и как следствие, уменьшается (увеличивается) среднее значение выходного сигнала. Сформированная последовательность импульсов через токоограничивающий резистор R3 поступает на затвор VT1, который включен по схеме с общим истоком. Нагрузка в виде светодиодной ленты или последовательно включенных мощных светодиодов включается в разрыв цепи стока VT1.

В данном случае установлен мощный MOSFET транзистор с максимальным током стока 13А. Это позволяет управлять свечением светодиодной ленты длиной в несколько метров. Но при этом транзистору может потребоваться теплоотвод.

Блокирующий конденсатор C2 исключает влияние помех, которые могут возникать по цепи питания в моменты переключения таймера. Величина его ёмкости может быть любой в пределах 0,01-0,1 мкФ.

Плата и детали сборки регулятора яркости

Односторонняя печатная плата имеет размер 22х24 мм. Как видно из рисунка на ней нет ничего лишнего, что могло бы вызвать вопросы.

После сборки схема ШИМ-регулятора яркости не требует наладки, а печатная плата легка в изготовке своими руками. В плате, кроме подстроечного резистора, используются SMD элементы.

  • DA1 – ИМС NE555;
  • VT1 – полевой транзистор IRF7413;
  • VD1,VD2 – 1N4007;
  • R1 – 50 кОм, подстроечный;
  • R2, R3 – 1 кОм;
  • C1 – 0,1 мкФ;
  • C2 – 0,01 мкФ.

Транзистор VT1 должен подбираться в зависимости от мощности нагрузки. Например, для изменения яркости одноваттного светодиода достаточно будет биполярного транзистора с максимально допустимым током коллектора 500 мА.

Управление яркостью светодиодной ленты должно осуществляться от источника напряжения +12 В и совпадать с её напряжением питания. В идеале регулятор должен питаться от стабилизированного блока питания, специально предназначенного для ленты.

Нагрузка в виде отдельных мощных светодиодов запитывается иначе. В этом случае источником питания диммера служит стабилизатор тока (его еще называют драйвер для светодиода). Его номинальный выходной ток должен соответствовать току последовательно включенных светодиодов.

Читайте так же

Одно из главных подручных средств в лаборатории радиолюбителя — это конечно же блок питания, а как известно, основа большинства блоков питания — силовой трансформатор напряжения. Иногда в руки попадаются отличные трансформаторы, но после проверки обмоток становится ясно, что нужное нам напряжение отсутствует по причине перегорания первички или вторички. Выход из такой ситуации один — перемотать трансформатор и мотать вторичную обмотку своими руками. В радиолюбительской технике обычно нужно иметь напряжение от 0 до 24 вольт, для питания разнообразный устройств.

Поскольку блок питания будет работать от бытовой сети 220 вольт, то при проведении небольших расчетов становится ясно, что в среднем каждые 4-5 витков во вторичной обмотке трансформатора дают напряжение 1 вольт.

Как сделать зарядное устройство для автомобильного аккумулятора своими руками?

Это значит, для блока питания с максимальным напряжением 24 вольт, вторичная обмотка должна содержать 5*24 итого получаем 115-120 витков. Для мощного блока питания также нужно подобрать для перемотки провод нужного сечения, в среднем диаметр провода выбирают для блока питания средней мощности составляет 1 миллиметр (от 0,7 до 1,5 мм).

Для создания мощного блока питания под рукой нужно иметь мощный трансформатор, отлично подойдет трансформатор от черно-белого телевизора производства советского союза. Трансформатор нужно разобрать, вынуть сердечек (железки) и отмотать все вторичные обмотки оставляя только сетевую, весь процесс занимает не более 30 минут.

Далее берем указанный провод и мотаем на каркас трансформатора с расчетом 5 витков 1 вольт. Таким образом можно своими руками собрать например зарядное устройство для автомобильного аккумулятора, для зарядки автомобильного аккумулятора вторичная обмотка должна содержать 60-70 витков (напряжение зарядки должно быть не менее 14 вольт, сила тока 3-10 ампер), потом нужен мощный диодный мост для выпрямления переменного тока и все готово.

Но для зарядки автомобильного аккумулятора провод вторичной обмотки трансформатора нужно подобрать с диаметром не менее 1,5 миллиметров (от 1,5 до 3 миллиметров, чтобы иметь зарядный ток от 3 до 10 ампер). Таким же образом можно спроектировать сварочный аппарат и другие силовые приборы.

Зарядное устройство 12в аккумулятора своими руками

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14.5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Вот эти компоненты:

Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в этой статье), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

Провода в зарядном устройстве должны быть толстые и короткие.

Как сделать зарядку для автомобильного аккумулятора

Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.

Схема зарядного устройства для автомобильного аккумулятора

Сборка зарядного устройства

Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.

Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

  1. Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
  2. Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).

Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

Защита от переполюсовки

Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.

Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.

Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

Как заряжать аккумулятор

Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.

Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.

DC-DC понижающий преобразователь TC43200 — ссылка на товар.

Обзор понижающего преобразователя DC-DC CC CV TC43200.

Устройство можно использовать для дозарядки автомобильных аккумуляторных батарей емкостью до 100 Ач, для зарядки в режиме, близком к оптимальному, мотоциклетных батарей, а также (при несложной доработке) в качестве лабораторного блока питания.

Зарядное устройство выполнено на основе двухтактного транзисторного преобразователя напряжения с автотрансформаторной связью и может работать в двух режимах — источника тока и источника напряжения. При выходном токе, меньшем некоторого предельного значения, оно работает как обычно — в режиме источника напряжения. Если пoпытaтьcя увеличить ток нагрузки сверх этого значения, выходное напряжение будет резко уменьшаться — устройство перейдет в режим источника тока.

Зарядные устройства для автомобильного аккумулятора своими руками

Режим источника тока (обладающего большим внутренним сопротивлением) обеспечен включением балластного конденсатора в первичную цепь преобразователя.

Принципиальная схема зарядного устройства представлена на рис. 2.94.


Рис. 2.94. Принципиальная схема зарядного устройства с гасящим конденсатором в первичной цепи.

Сетевое напряжение через балластный конденсатор С1 поступает на выпрямительный мост VD1. Конденсатор С2 сглаживает пульсации, а стабилитрон VD2 стабилизирует выпрямленное напряжение. Стабилитрон VD2 одновременно защищает от перегрузки по напряжению транзисторы преобразователя на холостом ходе, а также при замыкании выхода устройства, когда напряжение на выходе моста VD1 повышается. Последнее связано с тем, что при замыкании выходной цепи генерация преобразователя может срываться, при этом ток нагрузки выпрямителя уменьшается, а его выходное напряжение увеличивается. В таких случаях стабилитрон VD2 ограничивает напряжение на выходе моста VD1.

Преобразователь напряжения собран на транзисторах VT1, VT2 и трансформаторе Т1. Преобразователь работает на частоте 5 ÷ 10 кГц.

Диодный мост VD3 выпрямляет напряжение, снимаемое со вторичной обмотки трансформатора. Конденсатор С3 — сглаживающий.

Экспериментально снятая нагрузочная характеристика зарядного устройства изображена на рис. 2.95. При увеличении тока нагрузки до 0,35 ÷ 0,4 А выходное напряжение изменяется незначительно, а при дальнейшем увеличении тока резко уменьшается. Если к выходу устройства подключить недозаряженную батарею аккумуляторов, напряжение на выходе моста VD1 уменьшается, стабилитрон VD2 выходит из режима стабилизации и, поскольку во входной цепи включен конденсатор С1 с большим реактивным сопротивлением, устройство работает в режиме источника тока.

Если зарядный ток уменьшился, то устройство плавно переходит в режим источника напряжения. Это дает возможность использовать зарядное устройство в качестве маломощного лабораторного блока питания. При токе нагрузки менее 0,3 А уровень пульсаций на рабочей частоте преобразователя не превышает 16 мВ, а выходное сопротивление источника уменьшается до нескольких Ом. Зависимость выходного сопротивления от тока нагрузки показана на рис. 2.95.

Рис. 2.95. Нагрузочная характеристика зарядного устройства с гасящим конденсатором в первичной цепи.

Настройка зарядного устройства с гасящим конденсатором в первичной цепи

Налаживание начинают с проверки правильности монтажа. Затем убеждаются в работоспособности устройства при замыкании выходной цепи. Ток замыкания должен быть не менее 0,45 0,46 А. В противном случае следует подобрать резисторы R1, R2 с целью обеспечения надежного насыщения транзисторов VT1, VT2. Больший ток замыкания соответствует меньшему сопротивлению резисторов.

При необходимости использования устройства для зарядки малогабаритных аккумуляторов емкостью до единиц ампер-часов и регенерации гальванических элементов целесообразно обеспечить регулировку тока зарядки. Для этого вместо одного конденсатора С1 следует предусмотреть набор конденсаторов меньшей емкости, коммутируемых переключателем. С достаточной для практики точностью максимальный ток зарядки — ток замыкания выходной цепи — пропорционален ёмкости балластного конденсатора (при 4 мкФ ток равен 0,46 А).

Если нужно уменьшить выходное напряжение лабораторного источника питания, достаточно стабилитрон VD2 заменить другим, с меньшим напряжением стабилизации.

Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К40х25х11 из феррита 1500НМ1. Первичная обмотка содержит 2×160 витков провода ПЭВ-2 0,49, вторичная — 72 витка провода ПЭВ-2 0,8. Обмотки изолированы между собой двумя слоями лакоткани.

Стабилитрон VD2 установить на теплоотводе с полезной площадью 25 см 2

Транзисторы преобразователя в дополнительных теплоотводах не нуждаются, так как работают в ключевом режиме.

Конденсатор С1 — бумажный, рассчитанный на номинальное напряжение не менее 400 В.

Простая схема зарядного устройства для автомобильного аккумулятора

Как известно из законов работы трансформатора, ток в первичной обмотке, если трансформатор понижающий, меньше тока во вторичной обмотки в отношение напряжений или количества витков трансформатора. Я считаю хорошим зарядным устройством если оно способно выдавать 10А на выходе. На входе трансформатора будет 10/(220/15)= 0,7А. Согласитесь, током легче управлять если он меньшей величины. Зарядное устройство с регулировкой тока по первичной обмотке приведено ниже:

Схема очень простая и не требует наладки. Диоды моста в низковольтной сети необходимо установить на радиатор. Поскольку тиристор КУ202Н будет нагружен менее чем на 10% на радиатор его устанавливать нет смысла, он может быть установлен прямо на печатную плату. Пример собранной схемы на печатной плате приведен ниже.

Данное зарядное устройство высоконадежное и простое в сборке. Единственное что надо иметь – это трансформатор от 200 Вт, хотя это условие распространяется практически на все зарядные устройства.
Данную схему можно применять не только для автомобильной зарядки но и для любой в которой есть трансформатор…
Также, эту схему можно применять и для лабораторного источника большой мощности…
Опять-же, если найти мощный трансформатор 220/220 то можно получить ЛАТР

НА ДАЛЬНЕЙШЕЕ ЕЁ ПРИМЕНЕНИЕ ДУМАЙТЕ САМИ……

4.7 Зарядные устройства для аккумуляторов

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят вполне определенным током, значение которого можно определить по формуле I=0,1Q для кислотных и I=0,25Q для щелочных аккумуляторных батарей, где Q - паспортная электрическая емкость аккумуляторной батареи, А-ч; I - средний зарядный ток, А.

Установлено, что зарядка чрезмерно большим током приводит к деформации пластин аккумуляторов и даже разрушению их; зарядка малым током вызывает сульфатацию пластин и снижение емкости аккумуляторной батареи. Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени. Степень заряженности аккумуляторной батареи можно контролировать как по значению плотности электролита и напряжению (для кислотных), так и по напряжению (для щелочных) на полюсных выводах.

Окончание зарядки кислотной аккумуляторной батареи определяют по следующим признакам: напряжение на каждом аккумуляторе батареи достигает 2,5...2,6 В; плотность электролита достигает определенного значения и больше не изменяется; происходит обильное газовыделение - электролит "кипит"; электрическая емкость, сообщенная батарее, на 15...20% больше емкости, отданной в процессе разрядки.

Кислотные аккумуляторные батареи чувствительны к недозарядке и перезарядке, поэтому их зарядку надо заканчивать своевременно.

Щелочные аккумуляторные батареи менее критичны к режиму эксплуатации. Для них окончание зарядки характеризуется установлением на каждом аккумуляторе напряжения 1,6... 1,7 В и сообщением батарее 150...160% емкости, отданной ею в процессе разрядки. Зарядное устройство обычно состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока обычно используют проволочные реостаты и транзисторные стабилизаторы тока. В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД


зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой)

обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 75. В нем тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен. Ток зарядки аккумуляторной батареи GB1 поддерживается на определенном уровне. В процессе зарядки напряжение на батарее увеличивается, а ток, текущий через нее, стремится уменьшиться. Но при этом возрастает приведенное сопротивление первичной обмотки трансформатора Т1, напряжение на ней увеличивается, в результате чего ток через батарею GB1 изменяется незначительно.

Как показывают расчеты, наибольшее значение тока через аккумуляторную батарею при заданной емкости конденсатора С1 будет при равенстве падений напряжения на этом конденсаторе и первичной обмотке трансформатора. Первичную обмотку рассчитывают на полное напряжение сети для большей надежности устройства и возможности применения готовых понижающих трансформаторов, вторичную обмотку - на напряжение, в полтора раза большее, чем номинальное напряжение нагрузки.

В соответствии с этими рекомендациями и расчетами было собрано устройство, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А. Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Схема этого устройства приведена на рис. 76. Магазин конденсаторов состоит из конденсаторов С1-С4, суммарная емкость которых составляет 37,5 мкФ. Выключателями Q1-Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки. Например, для тока зарядки, равного 11 А, необходимо замкнуть контакты выключателей Ql, Q2 и Q4.

Рассмотрим работу устройства. Допустим, что к гнездам XS1 и XS2 подключена аккумуляторная батарея и выключателями Q1-Q4 установлен требуемый зарядный ток. В этом случае при нажатии



кнопки SB1 "Пуск" сработает реле К1, контактами К1.1 оно заблокирует кнопку SB1, а контактами К 1.2 подключит к заряжаемой батарее цепь автоматического отключения устройства. Контакты К 1.2 необходимы для того, чтобы батарея не разряжалась после отключения устройства от сети через диод VD6 и резисторы R3-R5.

Переменным резистором R4 устанавливают порог срабатывания реле К2 (оно должно срабатывать при напряжении на гнездах XS1 и XS2, равном напряжению полностью заряженной батареи). Когда напряжение батареи достигнет заданного значения, откроются стабилитрон VD8 и транзистор VT2. Сработает реле К2, которое контактами К2.1 обесточит обмотку реле К1, а оно, отпуская, контактами К1.1 разорвет цепь питания устройства. При нарушении контакта в цепи нагрузки напряжение на гнездах XS1 и XS2 резко возрастет, отчего также сработает реле К2 и отключит устройство от сети.

Аварийное отключение устройства происходит при любом положении движка переменного резистора R4. Но такие случаи нежелательны так как в течение времени срабатывания реле К2 и отпускания реле К1 конденсаторы С1-С4 будут находиться под повышенным напряжением (превышающим сетевое). Поэтому зарядное устройство следует включать в сеть лишь после того, как аккумуляторная батарея подсоединена к выходным гнездам. При коротком замыкании в цепи нагрузки ток через гнезда XS1 и XS2 несколько увеличивается, но для устройства это не опасно.

Все постоянные резисторы устройства - типа МЛТ-0,5; переменный резистор R4 - типа СП-1. Вместо транзистора КТ801А (VT1) можно применить КТ603, КТ608, КТ815 с любыми буквенными

индексами, вместо транзистора КТ315Б (VT2)-KT315, KT312. КТ503, КТ601-КТ603 с любыми буквами. Измерительные приборы РА1 и PU1 - типа М5-2, рассчитанные соответственно на ток 30 А и напряжение 30 В. Реле К1 - типа PC-13 (паспорт РС4.523.029), его контакты К1.1 - параллельно соединенные три группы контактов. Возможно применение реле типа МКУ-48, рассчитанного на переменное напряжение 220 В. В этом случае надобность в диоде VD1 и конденсаторе С5 отпадает. Реле К2 - типа РЭС-22 (паспорт РФ4.500.129). Диоды Д305 двухполупериодного выпрямителя установлены на радиаторе с поверхностью охлаждения 300 см, от радиатора они электрически изолированы слюдяными прокладками. Радиатор крепится к шасси из дюралюминия, которое является как бы продолжением радиатора.

Вместо диодов Д305 можно применить Д214, Д242, но в этом случае в три-четыре раза возрастает тепловая мощность, рассеиваемая на них, поэтому размеры радиатора придется увеличить. Конденсаторы С1-С4 составлены из параллельно соединенных конденсаторов КБГ-МН, МБГЧ, МБГО, МБГП, МБМ соответствующих емкостей. Номинальное напряжение конденсаторов КБГ-МН и МБГЧ, рассчитанных на работу в цепях переменного тока, должно быть не менее 350 В, всех других типов конденсаторов - не менее 600 В. Конденсаторы С5-С7 - типов К50-3, К50-6, выключатели Ql-Q4-типа TB2-1-2 или ТП1-2, кнопка SB1 - КП1, КМ 1-1. П2К.

Сетевой трансформатор Т1 выполнен на магнитопроводе ШЛ32х40. Обмотка I содержит 670 витков провода ПЭВ-1 0,9. обмотка II - 75 витков провода ПЭВ-2 2,26. Намотку вторичной обмотки ведут в два провода.

В качестве корпуса зарядного устройства можно использовать металлическую коробку размерами 360 х 220 х 220 мм, просверлив в ее стенках отверстия для свободной циркуляции воздуха.

Налаживание смонтированного устройства сводится к подбору шунта амперметра РА1 на ток 30 А и подбору емкостей конденсаторов С1-С4, обеспечивающих требуемые зарядные токи.

При зарядке 12-вольтовых аккумуляторных батарей током 15 А КПД устройства достигает 75%, а температура внутри корпуса после 10 ч непрерывной работы не поднимается выше 40 C.

Такое устройство можно применять и для зарядки аккумуляторных батарей с напряжением менее 12 В, например 6-вольтовых мотоциклетных. Но тогда надписи около выключателей Q1-Q4 не будут соответствовать фактическим значениям зарядных токов. Фактический зарядный ток в этом случае не должен превышать 15 А.

Это зарядное устройство можно дополнить измерителем заряда, сообщенного аккумулятору. Принцип работы такого измерителя

заряда может быть основан на преобразовании напряжения в частоту (схемы преобразователей "напряжение-частота" нередко приводятся в журнале "Радио"). Напряжение следует снимать с резистора небольшого сопротивления (0,05...0,1 Ом) включенного в цепь зарядки аккумулятора. При наличии цифрового счетчика заряда несложно обеспечить автоматическое отключение устройства от сети при сообщении батарее заданного заряда. Можно также дополнить зарядное устройство реле времени, чтобы отключение аккумулятора обеспечивалось автоматически через заданное время. Продолжительность зарядки при этом рассчитывают исходя из емкости, которую необходимо сообщить аккумулятору, и значения тока зарядки. Особенно удобно использовать заряд по времени в тех случаях, когда аккумулятор разряжен до напряжения 10,5 В (для 12-вольтного аккумулятора), при этом считается, что аккумулятору следует сообщить в процессе зарядки 105...110% его номинальной емкости.

На рис. 77 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения. Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT2. Времязадающий конденсатор С1 заряжается коллекторным током транзистора VT1. Значение этого тока определяется положением движка переменного резистора R3. Чем больше ток, тем быстрее заряжается конденсатор С1 до напряжения открывания транзистора VT2, тем раньше открывается тринистор VS1, тем больше среднее значение тока через аккумуляторную батарею. Следовательно, зарядный ток регулируется поворотом движка переменного резистора R3. Напряжение на этот резистор поступает от подключенной к гнездам XS1 аккумуляторной батареи. Чтобы исключить зависимость зарядного



тока от напряжения на аккумуляторной батарее, напряжение на переменном резисторе R3 стабилизировано стабилитроном VD6.

Питание базы транзистора VT1 частью напряжения аккумуляторной батареи позволило обеспечить эффективную защиту зарядного устройства от неправильной полярности подключения аккумуляторной батареи к гнездам XS1, т. е. от переполюсовки. При переполюсовке диод VD7 окажется включенным в обратном направлении, напряжение на базе транзистора VT1 будет отсутствовать, конденсатор С1 не будет заряжаться и ток в нагрузке будет равен нулю. Аналогичное явление будет наблюдаться и в том случае, если к гнездам XS1 подключена нагрузка, не имеющая собственной ЭДС, а также аккумулятор с напряжением меньше 4...5 В.

Для измерения силы зарядного тока использован микроамперметр РА1 с шунтом из резисторов R7, R8. Защита устройства обеспечена со стороны сети и нагрузки предохранителями FU1 и FU2.

Налаживание зарядного устройства несложно. Подключив аккумуляторную батарею с номинальным напряжением 12 В и подав сетевое напряжение выключателемQ1, перемещают движок переменного резистора R3 в нижнее по схеме положение и подбором резистора R2 устанавливают ток в нагрузке, соответствующий максимальному значению (в данном случае 5 А). С помощью резистора R8 устанавливают предел измерения тока прибором РА1 - полное отклонение стрелки прибора должно соответствовать току 10 А.

На рис. 78 показаны временные диаграммы работы обоих описанных зарядных устройств. Ток заряда протекает через аккуму-



лятор только тогда, когда Uз < Ua. Таким образом, форма зарядного тока отличается от синусоидальной, особенно для устройства с тринисторным регулированием. Это приводит к увеличению коэффициента формы кривой зарядного тока (коэффициент формы - это отношение действующего значения тока к среднему значению тока). Под током заряда понимают именно среднее значение тока; это значение и показывает амперметр, включенный в зарядную цепь. Действующее же значение тока характеризует тепловые потери в обмотках трансформатора, диодах выпрямительного моста и регулирующем тринисторе. Следовательно, увеличение коэффициента формы кривой тока приводит к необходимости увеличивать сечение проводов обмоток трансформатора и его мощность, применять более мощные диоды и тринисторы и устанавливать их на радиаторах большей площади. Как показывает анализ, коэффициент формы растет с увеличением угла а: и с увеличением отношения Ua/Umax. Так, для зарядного устройства по схеме рис. 76 при Ua/Umax = 0,7, коэффициент формы равен 1,5; для зарядного устройства по схеме рис. 77 при Ua/Umax = 0,7, a = 90° коэффициент формы равен 3. Это означает, что вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока;

мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором.

Значительно снизить потери мощности в тринисторе и, следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 79. Регулирующий узел аналогичен используемому в предыдущем варианте устройства. Регулирующий тринистор VS1 включен в диагональ выпрямительного моста VD1-VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, значительно уменьшены потери мощности на шунте амперметра (резисторе R1) за счет включения амперметра в цепь первичной обмотки трансформатора Т1. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать



при разработке конструктивного исполнения (например, использовать переменный резистор R6 с пластмассовой осью).

О деталях зарядных устройств. В первом варианте (рис. 77) в качестве тринистора VS1 можно применить тринисторы КУ202 с любыми буквами, а также тринисторы 2Т122-25, 2Т132-50. Во втором варианте зарядного устройства (рис. 79) можно использовать тринисторы типов КУ201 (К,Л); КУ202 (К-Н). Выпрямительные диоды, работающие в цепи вторичной обмотки, помимо указанных на схемах могут быть типов Д231-Д233 (без буквы или с буквой А). Диоды VD1-VD4 в схеме на рис. 79 могут быть типов Д231-Д234, Д245, Д247 (с любыми буквами), КД202 (с буквами К, М, Р). Времязадающий конденсатор С1 должен иметь небольшой температурный коэффициент емкости во всем диапазоне рабочих температур, в противном случае ток зарядки аккумулятора будет сильно зависеть от температуры. Желательно использовать конденсаторы типов К73-17, К73-24. Трансформатор Т1 выполнен на магнитопроводе ШЛ25 х 50. Обмотка I содержит 710 витков провода ПЭВ-2 0,8, обмотка II - 65 витков провода ПБД 2,64.

В зарядном устройстве по схеме рис. 77 диоды VD1-VD4 установлены на радиаторах с поверхностью охлаждения 30...40 см^2 (если применены германиевые диоды типа Д305; для кремниевых диодов площадь поверхности радиаторов следует увеличить в 2...3



раза). Тринистор VS1 также установлен на радиаторе с охлаждающей поверхностью не менее 30 см^2. В зарядном устройстве по схеме рис. 79 на радиаторы установлены только диоды VD5-VD8.

К обоим зарядным устройствам могут быть подключены аккумуляторные батареи с напряжением как 12 В, так и меньше (например, 6 В).

На рис. 80 представлена еще одна схема зарядного устройства, в котором осуществляется стабилизация тока заряда. Регулирующим элементом является тринистор. Это устройство можно использовать не только для зарядки аккумуляторов, но и во всех других случаях, когда сопротивление нагрузки изменяется, а ток должен оставаться неизменным (например, для электролиза, который радиолюбители используют для травления печатных плат, для нанесения покрытий на металлические детали).

Основные характеристики такого зарядного устройства Максимальный ток нагрузки, А,................................................. 7

Максимальное напряжение на нагрузке, В................................ 16

Коэффициент стабилизации по току нагрузки Кст= (Uвх/Uвх)/(Iвых/Iвых), не менее................................ 70

Коэффициент полезного действия, %, не менее........................ 70

Рассмотрим работу устройства по его принципиальной схеме и временным диаграммам (рис. 81), которые показаны для случая нагрузки, не содержащей источников ЭДС.

На транзисторе VT2 собран генератор пилообразного напряжения. Через резистор R4 на базу транзистора VT2 подано открываю

щее напряжение (рис. 81, диаграмма А), а через резистор R2 с двухполупериодного выпрямителя на диодах VD1-VD4 поступает закрывающее пульсирующее напряжение (рис. 81, диаграмма Б). Суммарное напряжение на базе транзистора VT2 показано прерывистой линией Б. Диод VD11 ограничивает амплитуду закрывающего напряжения. Сопротивление резисторов R2 и R4 выбрано таким, что транзистор большую ча


сть времени закрыт. Конденсатор С3 заряжается через резистор R5. Но в момент приближения сетевого напряжения к нулю транзистор VT2 открывается, разряжая конденсатор СЗ. На коллекторе транзистора формируется напряжение, по форме близкое к пилообразному (рис. 81, диаграмма В), Через резистор R6 оно поступает на один из входов дифференциального усилителя на транзисторах VT4, VT5, а на другой подается напряжение (рис. 81, диаграмма Г) с выхода операционного усилителя (ОУ) DA1, которое зависит от положения движка резистора R 15.

Как только значения напряжения на базах транзисторов VT4 и VT5 сравняются, транзистор VT4 откроется. Вслед за ним откроется транзистор VT3 и сформирует импульс тока (рис. 81, диаграмма Д), открывающий тринистор VS1. С этого момента полупериода на нагрузку будет подано выпрямленное напряжение с обмотки II трансформатора Т1 (рис. 81, диаграмма Е). Чем больше напряжение на базе транзистораVT5, тем позже будут возникать импульсы, открывающие тринистор, и тем меньше будет средний ток через нагрузку.

Функцию стабилизатора тока выполняет узел на ОУ DA1. Датчиком тока служит резистор R 11; напряжение, снимаемое с этого резистора, пропорционально току нагрузки. Через резистор R13 оно подведено к неинвертирующему входу ОУ.

Если по какой-либо причине ток через нагрузку увеличился, то увеличивается и напряжение на неинвертирующем входе ОУ. Это приводит к соответствующему увеличению напряжения на базе транзистора VT5 и увеличению угла открывания тринистора VS1 -ток через нагрузку уменьшается. Таким образом, отрицательная

обратная связь по току нагрузки поддерживает его на заданном уровне.

Конденсаторы С5, С7 сглаживают пульсации напряжения на выходе. Резисторы R 12, R 16 обеспечивают подачу небольшого отрицательного напряжения на инвертирующий вход ОУ в нижнем по схеме положении движка резистора R 15. Это позволяет регулировать ток нагрузки практически от нуля. Конденсатор С6 повышает устойчивость работы ОУ. На элементы устройства поступает напряжение питания от двух стабилизаторов (VD9, VT1 и VD12, R3).

В устройстве ОУ К140УД1Б можно заменить на К140УД5, К140УД6, К140УД7, К153УД2 (с соответствующей цепью коррекции); транзистор КТ801Б - на любой из серий КТ603, КТ608, КТ801, КТ807, КТ815; КТ315В - на КТ312, КТ315, КТ316, КТ201; КТ814Б -на КТ814, КТ208. Конденсаторы С1, С2, С4, С5, С7 устройства -



К50-6 или К50-35; С3, С6 - КМ-6 или К10-7в, КЛС. Резистор R11 образован двумя параллельно соединенными резисторами С5-16В

сопротивлением 0,1 Ом.

Диоды VD5-VD8 - типа Д305; их можно заменить на любые из серий Д242-Д248, но в этом случае возрастает рассеиваемая на каждом диоде мощность, и размеры теплоотводов придется увеличить. Амперметр РА1 - типа М5-2 с током полного отклонения

стрелки 10 А.

Трансформатор Т1 выполнен на ленточном магнитопроводе ШЛ25х32. Обмотка I содержит 710 витков провода ПЭВ-2 0,8;

обмотка II - 105 витков провода ПЭВ-2 0,21 с отводом от середины;

обмотка III - 80 витков провода ПБД 2,64.

Диоды VD5-VD8 установлены на теплоотводах площадью 50... 60 см^2 каждый. Тринистор VS1 установлен на теплоотводе площадью не

менее 200 см.

Большая часть элементов устройства смонтирована на печатной плате (рис. 82). Для налаживания устройства к его выходу подключают проволочный резистор сопротивлением 1...2 Ом и мощностью не менее 100 Вт (можно использовать нихромовую проволоку диаметром 0,5...1 мм). Движок переменного резистора R 15 устанавливают в верхнее по схеме положение и подборкой резистора R 14 добиваются, чтобы ток через нагрузку был равным 7 А. При вращении ручки переменного резистора ток должен плавно уменьшаться до нуля.

В заключение отметим, что применяемый тип тринистора VS1 и данные трансформатора указаны для использования в режиме зарядки аккумуляторов током до 7 А. Как уже отмечалось, запас по мощности тринистора и трансформатора необходим в связи с большим значением коэффициента формы зарядного тока. Если же устройство будет работать на нагрузку, не имеющую собственной ЭДС (например, гальваническую ванну), то мощность трансформатора может быть значительно снижена. При указанных данных устройство может отдавать в нагрузку ток до 12... 15 А, однако придется подобрать сопротивление резистора R14.

На рис. 83 представлена схема зарядного устройства, которое обеспечивает автоматическую зарядку аккумуляторных батарей напряжением б... 12 В и током до 6 А. Устройство автоматически уменьшает зарядный ток в 1,5...2 раза примерно через 8 ч после начала зарядки, а через 11 ч зарядка прекращается совсем. Уменьшение зарядного тока в конце зарядки положительно сказывается на протекании электрохимических процессов в аккумуляторе.

Рассмотрим работу зарядного устройства. Допустим, что аккумуляторная батарея подключена к гнездам XS1 в соответствии с


указанной полярностью, а контакты выключателя питания Q1 замкнуты.

Напряжение с выводов обмотки II трансформатора Т1 подается на двухполупериодный управляемый выпрямитель, выполненный на тринисторах VS1, VS2, а затем - на зажимы аккумуляторной батареи. Напряжение на управляющие электроды тринисторов поступает через диоды VD1, VD2 от узла формирования управляющих импульсов, выполненного на транзисторах VT1-VT5. Угол открывания тринисторов VS1, VS2, а следовательно, среднее значение зарядного тока задаются положением движка переменного резистора R7 (более подробно об этом можно прочитать в описании работы зарядного устройства, схема которого приведена на рис. 77). Аналогичным образом в этом зарядном устройстве обеспечивается защита от переполюсовки выводов аккумуляторной батареи.

Импульсы, сформированные однопереходным транзистором VT2, усиливаются по току транзистором VT3 и через диоды VD1, VD2 подаются на управляющие электроды тринисторов. При положительных полуволнах напряжения вторичной обмотки работает один тринистор, а при отрицательных - другой; импульсы же управления формируются в каждом полупериоде и подаются на управляющий электрод тринистора VS1 через диод VD1, а тринистора VS2 - через диод VD2. Полевые транзисторы VT4, VT5 обеспечивают изменение зарядного тока в конце зарядки, а затем полное отключение аккумулятора. Для формирования соответствующих временных интервалов используются микросхемы DD1, DD2.

На счетный вход С1 микросхемы DD1 К176ИЕ12 (работа этой микросхемы подробно рассматривалась выше) подаются прямоугольные импульсы с частотой, равной удвоенной частоте сетевого напряжения, т. е. 100 Гц. Эти импульсы формируются из двухполупериодного выпрямленного напряжения, снимаемого с диодов VD3, VD4 и поданного через резистор R4 на базу транзистора VT6. Благодаря работе транзистора в ключевом режиме с его коллектора снимаются импульсы прямоугольной формы. С выхода S2 микросхемы DD1 снимаются импульсы, имеющие частоту в 2^14= 16 384 раз меньшую, чем на входе С1; эти импульсы подаются на вход второго счетчика С2, который делит частоту импульсов еще на 60. Таким образом, на выводе 10 микросхемы DD1 имеются импульсы с частотой около 0,0001 Гц, что соответствует периоду в 2,7 ч. Эти импульсы поступают на вход СР счетчика-дешифратора DD2 (работа этой микросхемы также подробно рассматривалась на предыдущих страницах книги). Через время 2,7 х 3 = 8,1 ч на выводе 7 микросхемы DD2 появляется напряжение высокого уровня, которое через резистор R12 подается на затвор полевого транзи-

стора VT5 и закрывает его. В результате сопротивление цепи зарядки конденсатора С2 увеличивается на значение сопротивления резистора R10 и зарядный ток уменьшается в 1,5...2 раза.

Еще через 2,7 ч напряжение высокого уровня появляется на выводе 10 микросхемы DD2, что приводит к закрыванию полевого транзистора VT4. Цепь зарядки конденсатора С2 оказывается обесточенной, формирование импульсов управления прекращается и зарядный ток аккумулятора падает до нуля. Одновременно появившееся на выводе 13 (вход CN) микросхемы DD2 напряжение высокого уровня запрещает дальнейшую работу счетчика микросхемы DD2. В таком состоянии зарядное устройство может находиться до тех пор, пока вновь не будет нажата кнопка SB1 "Пуск". Нажатие этой кнопки устанавливает счетчики микросхем DD1, DD2 в нулевое состояние, и с этого момента начинается отсчет интервалов времени.

Микросхемы DD1, DD2 и формирователь импульсов на транзисторе VT6 питаются от параметрического стабилизатора R3VD8, который, в свою очередь, питается от двухполупериодного выпрямителя VD3VD4. Диод VD7 обеспечивает развязку импульсов переменного напряжения, подаваемого на формирователь VT6, от постоянного напряжения на конденсаторе С1. Формирователь управляющих импульсов питается через диоды VD1 и VD2 и управляющие электроды тринисторов.

В автоматическом зарядном устройстве могут быть использованы детали следующих типов. Тринисторы VS1, VS2 - типа КУ202 с буквами Е, И, Л, Н (тринисторы должны допускать подачу как прямого, так и обратного напряжения не менее 100 В), а также любые из серий Т10, Т112, Т132. Диоды КД521Б могут быть заменены на КД521А (В), Д223А (Б), КД102А(Б), КД106А, КД105Б. Транзистор VT1 может быть типа КТ502 (с любыми буквами), КТ361 (А, В-Е), КТ209 (Г-М); VT3 - КТ815, КТ817 с любыми буквами; VT4, VT5 -КП103 с любыми буквами; VT6 КТ315, КТ503 с любыми буквами. Конденсатор С1 - типа К50-24 или К50-16; С2-К73-17, К73-24. Переменный резистор R7 - СПЗ-4аМ, СП-04, СПЗ-9а. Кнопка SB1 -П2К или КМ1-1; выключатель питания Q1 - ТВ2-1, МТ-1, Т1.

Тринисторы установлены на общем радиаторе без применения изолирующих шайб. Радиатором может служить металлический корпус прибора.

Трансформатор Т1 намотан на магнитопроводе ШЛ25 х 50. Обмотка I содержит 710 витков провода ПЭВ-2 0,8, обмотка II -125 витков провода ПЭБ-2 1,32 с отводом от середины.

Настройку зарядного устройства осуществляют следующим образом. Правые по схеме выводы резисторов R 11, R 12 отсоеди

няют от выходов микросхемы DD2 и подсоединяют к эмиттеру транзистора VT6, при этом оба полевых транзистора должны быть открыты. К гнездам XS1 подключают аккумуляторную батарею напряжением 12 В и подают напряжение питания выключателем Q1. Движок переменного резистора R7 устанавливают в нижнее по схеме положение. Подборкой сопротивления резистора R9 устанавливают максимальный зарядный ток 6 А. Затем правый по схеме вывод резистора R 12 соединяют с плюсовым выводом конденсатора С1 (при этом транзистор VT5 закрывается) и подборкой сопротивления резистора R10 устанавливают ток через аккумулятор 3...4 А. После этого правые по схеме выводы резисторов Rll, R12 подключают в соответствии с принципиальной схемой. Настройка на этом закончена.

Последовательность действий при работе с данным зарядным устройством такова: подключают заряжаемую аккумуляторную батарею к гнездам XS1, подают напряжение сети на первичную обмотку трансформатора Т1, затем нажимают кнопку SB1 - отсчет времени начался. Примерно через 11 ч аккумулятор полностью обесточится.

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

где I - средний зарядный ток, А., а Q - паспортная электрическая емкость аккумуляторной батареи, А-ч.

Классическая зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 - Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А, устанавливается амперметром. устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 - VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.