Украшения. Аксессуары. Дизайн ногтей. Цвета. Нанесение. Ногти

Расчет параметрического стабилизатора напряжения на стабилитроне. Расчет параметрических стабилизаторов напряжения

До недавнего времени для питания маломощных каскадов радиоэлектронной аппаратуры использовались параметрические стабилизаторы напряжения. Сейчас намного дешевле и эффективней применить малошумящие компенсационные стабилизаторы, подобные ADP3330 или ADM7154. Тем не менее в ряде уже производящейся аппаратуры уже применены параметрические стабилизаторы, поэтому необходимо уметь их расчитывать. Наиболее распространенная схема параметрического стабилизатора приведена на рисунке 1.


Рисунок 1. Схема параметрического стабилизатора

На данном рисунке приведена схема стабилизатора положительного напряжения. Если требуется стабилизировать отрицательное напряжение, то стабилитрон ставится в противоположном направлении. Напряжение стабилизации полностью определяется типом стабилитрона.

Расчет стабилизатора таким образом сводится к расчету резистора R 0 . Прежде чем начинать его расчет следует определиться с основным дестабилизирующим фактором:

  • входное напряжение;
  • ток потребления.

Нестабильное входное напряжение при стабильном токе потребления присутствует обычно в источниках опорного напряжения для аналого-цифровых и цифро-аналоговых преобразователей. Для параметрического стабилизатора, питающего определенный узел аппаратуры, приходится учитывать изменение выходного тока. В приведенной на рисунке 1 схеме при постоянном входном напряжении ток I всегда будет стабильным. Если нагрузка будет потреблять меньше тока, то его излишки уйдут в стабилитрон.

I = I ст + I н (1)

Поэтому максимальный ток нагрузки не может превышать максимальный ток стабилитрона. Если входное напряжение не будет постоянным (а эта ситуация очень распространена), то допустимый диапазон изменения тока нагрузки дополнительно уменьшается. Сопротивление резистора R 0 расчитывается по закону Ома. При расчете используется минимальное значение входного напряжения.

(2)

Максимальный диапазон изменения входного напряжения можно определить по закону Киргофа. После небольших преобразований его можно свести к следующей формуле:


(3)

Таким образом расчет параметрического стабилизатора достаточно прост. Именно это и составляет его привлекательность. Однако при выборе типа стабилизатора следует иметь в виду то обстоятельство, что стабилитрон (но не стабистор) является источником шума. Поэтому описанный стабилизатор не следует применять в ответственных блоках радиоаппаратуры. Еще раз подчеркну, что при проектировании новой аппаратуры в качестве вторичного источника питания лучше подойдут малогабаритные малошумящие компенсационные стабилизаторы, такие как ADP7142.

Литература:

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Параметрические стабилизаторы напряжения. Расчёт простейшего параметрического стабилизатора на стабилитроне (http://www.radiohlam.ru/)

Расчет и проектирование параллельного стабилизатора. Особенности применения. (10+)

Параметрический параллельный стабилизатор

Принцип действия параметрического параллельного стабилизатора основан на том, то сквозь него пропускается фиксированный (или пости фиксированный) ток, заданный источником тока (это очень хорошо) или резистором (это немного хуже). Далее ток разделяется на два русла. Часть тока направляется на нагрузку. Другая часть проходит в обход нагрузки. Сила обходящего тока, а значит и сила тока нагрузки, поддерживается такой, чтобы напряжение на нагрузке равнялось заданному значению. Типичные схемы параллельных стабилизаторов приведены на рисунке.

Типичные схемы параллельных параметрических стабилизаторов

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые.

Релаксационный генератор пилообразного напряжения, сигнала, пилы. Схем...
Схемы и расчет релаксационных генераторов, формирующих пилообразное напряжение...

Умный дом, дача, коттедж. Интеллектуальная автоматика. Автоматизироват...
Умный дом своими руками. Методы, технологии, схемы, программы...

Проверка электронных элементов, радиодеталей. Проверить исправность, р...
Как проверить исправность детали. Методика испытаний. Какие детали можно использ...

Поиск, обнаружение разрывов, обрывов проводки. Найти, искать, отыскать...
Детали, сборка и наладка прибора для обнаружения скрытой проводки и ее разрывов...


Электропитание маломощных устройств РЭС с небольшим пределом изменения тока потребления обычно осуществляется от параметрических стабилизаторов напряжения (ПСН). Кроме того, эти стабилизаторы широко используются в качестве источников опорного напряжения (ИОН) в компенсационных стабилизаторах напряжения и тока.

Параметрический стабилизатор осуществляет стабилизацию выходного напряжения за счет свойств вольтамперных характеристик нелинейного элемента, например стабилитрона, стабис-тора, дросселя насыщения. Структурная схема параметрического стабилизатора приведена на рис. 15.1. В ней нелинейный элемент НЭ подключен к входному питающему напряжению?/ 0 через гасящий резистор /?„ а параллельно НЭ включена нагрузка Я н. При увеличении входного напряжения?/ 0 ток через нелинейный элемент НЭ увеличивается, в результате этого возрастает падение напряжения на гасящем резисторе так, что выходное напряжение на нагрузке остается постоянным. Стабильность выходного напряжения в параметрическом стабилизаторе определяется наклоном вольтамперной характеристики НЭ и является невысокой. В параметрическом стабилизаторе нет возможности плавной регулировки выходного напряжения и точной установки его номинала.

Как отмечалось, для стабилизации постоянного напряжения в ПСН применяются элементы с нелинейной ВАХ. Одним из таких элементов является кремниевый стабилитрон. Основная схема однокаскадного ПСН приведена на рис. 15.2.

Рис. 15.1

Рис. 15.2. Схема однокаскадного параметрического стабилизатора

В этой схеме при изменении входного напряжения и т на ±Д С/ т ток через стабилитрон VI) изменяется на А/ ст, что приводит к незначительным изменениям напряжения на стабилитроне (на ±Д?/„), а следовательно, и на нагрузке. Значение Д{/ н зависит от Д?/ вх, сопротивления ограничивающего резистора Я т и

ди ст

дифференциального сопротивления стабилитрона г ст = --.

д1 ст

На рис. 15.3 приведен пример статической характеристики стабилизатора для пояснения принципа стабилизации и определения коэффициента стабилизации.

Коэффициент стабилизации (по входному напряжению) схемы ПСН нарис. 15.2 и характеристикам на рис. 15.3 представляется как

А и к и т

и, „ « г

Внутреннее сопротивление стабилизатора определяется в основном дифференциальным сопротивлением стабилитрона. На рис. 15.4 приведены зависимости г ст маломощных стабилитронов от напряжения стабилизации для различных токов стабилизации / сх. Из графиков видно, что при увеличении / ст дифференциальное сопротивление уменьшается и достигает

минимального значения для стабилизации 6-8 В.

стабилитронов с напряжением

Рис. 15.4.

Рис. 15.5.

Температурный коэффициент напряжения а н стабилитрона определяет величину отклонения выходного напряжения ПСН при изменении температуры. На рис. 15.5 приведена зависимость а н от напряжения стабилизации. Для приборов с и ст > 5,5 В при повышении температуры напряжение на стабилитроне возрастает. Поэтому температурная компенсация в этом случае может быть достигнута включением последовательно со стабилитроном диодов в прямом направлении (У0 2 , К/) 3 на рис. 15.6, а).

Однако при этом возрастает внутреннее сопротивление ПСН за счет дифференциальных сопротивлений термокомпенсирующих диодов в прямом направлении г диф, которое зависит от выбранного типа диода и режима его работы. В качестве примера на рис. 15.7 приведены зависимости г диф от прямого тока для не-


Рис. 15.6.

а - с термокомпенсирующими диодами К/) 2 , К/) 3 ; б - двухкаскадного стабилизатора; в - мостового стабилизатора с одним стабилитроном; г - мостового стабилизатора с двумя стабилитронами; д - стабилизатора с эмиттерным повторителем; е - с токостабилизирующим двухполюсником; ж - с токостабилизирующими транзисторами различной проводимости п-р-п ир-п-р

которых типов диодов и стабилитронов, включенных в прямом направлении. Необходимо отметить, что термокомпенсированный ПСН имеет повышенное значение г ст и пониженный коэффициент стабилизации. На рис. 15.8 приведены зависимости температурного коэффициента от величины прямого тока для стабилитронов типа Д814 и диода ДЗ10, которые могут быть использованы для температурной компенсации.

Если требуется повышенная стабильность выходного напряжения ПСН, то применяются двухкаскадные или мостовые схемы стабилизаторов, приведенные на рис. 15.6, б , в, г. Предварительная стабилизация напряжения в двухкаскадных ПСН (рис. 15.6, б), осуществляемая с помощью элементов Я г, УЕ) и Г/) 2 , позволяет получить достаточно высокий коэффициент стабилизации выходного напряжения

Я Г Я г2

к = к к ~ -1Л__ г| _

ст2к К ст1 К ст2 у,)(у

^ нх "ст1 " *ст2/"стЗ " "ст4 " "ст5 /

где к ст, к ст2 - коэффициенты стабилизации первого и второго каскадов; г стЬ г ст2 - дифференциальные сопротивления стабилитронов -КТ> 3 ; а*ст4, ^ст5 - дифференциальные сопротивления

диодов Уй 4, Г/) 5 . Температурный уход напряжения на нагрузке и внутреннее сопротивление двухкаскадного ПСН такие же, как в схеме на рис. 15.6, а.

Рис. 15.7.

от прямого тока

Рис. 15.8.

от прямого тока

Повышение коэффициента стабилизации в мостовых схемах (рис. 15.6, в , г) достигается за счет компенсирующего напряжения, возникающего на резисторе R 2 или стабилитроне VD при изменениях входного напряжения. Коэффициент стабилизации при R H = const:

для схемы рис. 15.6, в

и»

U,Ar„/R 3 -R 2 /R,y

где U H - напряжение на нагрузке R„;

для схемы на рис. 15.6, г

где г ст і и г ст 2 - дифференциальные сопротивления стабилитронов уЬ и уо 2 .

В мостовых параметрических стабилизаторах теоретически коэффициент стабилизации может быть бесконечно большим, если выбрать элементы, исходя из условий: для рис. 15.6, в г ст /Я 3 = R 2 /R а для схемы на рис. 15.6, г г ст2 /Я 2 = г ст /Я. Внутреннее сопротивление для схемы на рис. 15.6, в г н = г С1 + Я 2 , а для схемы на рис. 15.6, г

Г н Гст1+ Г -т2-

Следует отметить, что относительно высокая стабильность выходного напряжения в схемах ПСН на рис. 15.6, б-г достигается за счет значительного ухудшения КПД по сравнению со схемой на рис. 15.3. Повысить стабильность выходного напряжения ПСН без ухудшения КПД позволяет схема на рис. 15.6, е за счет применения в ней источника тока, выполненного на транзисторе УТ, стабилитроне У[) (вместо которого могут быть включены два диода, последовательно соединенных в прямом направлении) и резисторах Я э и /? б. Это позволяет стабилизировать ток, протекающий через стабилитрон У1) 2 и тем самым резко уменьшить отклонения напряжения на нагрузке при больших изменениях входного напряжения. Температурный уход и внутреннее сопротивление этой схемы ПСН практически такие же, как в схеме на рис. 15.2.

Максимальная выходная мощность рассмотренных схем ПСН ограничивается предельными значениями тока стабилизации и рассеиваемой мощности стабилитрона. Если использовать транзистор в режиме эмиттерного повторителя со стабилитроном в базовой цепи (рис. 15.6, д ), то мощность нагрузки может быть увеличена. Коэффициент стабилизации ПСН на рис. 15.6, д

  • (15.5)
  • (15.6)

к - * и -

" (1 + цг ст /А 0)?/ и ’

а внутреннее сопротивление

/?(/)« р(г э +/* б /Л 21э);

г б, г э, И 2 э - соответственно сопротивления базы, эмиттера, коллектора и коэффициент передачи тока в схеме ОЭ транзистора.

Однако такой ПСН при 1/ ст > 5,5 В по температурному уходу уступает стабилизаторам, приведенным на рис. 15.6, а-г.

На рис. 15.6, ж приведена схема ПСН с дополнительными транзисторами различной проводимости. Для нее характерным является высокая стабильность выходного напряжения и возможность одновременного подключения двух нагрузок /? Н | и Я н2 к различным шинам входного напряжения. По коэффициенту стабилизации и температурному уходу эта схема незначительно превосходит схему на рис. 15.6, е , а внутренние сопротивления г ст ] и г ст 2 определяются стабилитронами СД и Е/) 2 соответственно.

Для многих электрических схем и цепей достаточно простого блока питания, который не имеет стабилизированной выдачи напряжения. Такие источники чаще всего включают в себя низковольтный трансформатор, диодный выпрямительный мост, и конденсатор, выступающий в виде фильтра.

Напряжение на выходе блока питания имеет зависимость от числа витков вторичной катушки трансформатора. Обычно напряжение бытовой сети имеет посредственную стабильность, и сеть не выдает нужные 220 вольт. Величина напряжения может плавать в интервале от 200 до 235 В. Значит, и напряжение на выходе трансформатора также не будет стабильным, а вместо стандартных 12 В получиться от 10 до 14 вольт.

Работа схемы стабилизатора

Электрические устройства, которые не чувствительны небольшим перепадам напряжения питания могут обойтись обычным блоком питания. А более капризные приборы уже не смогут работать без стабильного питания, и могут попросту сгореть. Поэтому есть необходимость во вспомогательной схеме выравнивания напряжения на выходе.

Рассмотрим схему работы , выравнивающего постоянное напряжение, на транзисторе и стабилитроне, который играет роль основного элемента, определяет, выравнивает напряжение на выходе блока питания.

Перейдем к конкретному рассмотрению электрической схемы обычного стабилизатора для выравнивания постоянного напряжения.

  • Имеется трансформатор для понижения напряжения с переменным напряжением на выходе 12 В.
  • Такое напряжение поступает на вход схемы, а конкретнее, на диодный выпрямительный мост, а также фильтр, выполненный на конденсаторе.
  • Выпрямитель, выполненный на основе диодного моста, преобразует переменный ток в постоянный, однако получается скачкообразная величина напряжения.
  • Полупроводниковые диоды должны работать на наибольшей силе тока с резервом 25%. Такой ток может создавать блок питания.
  • Обратное напряжение не должно снижаться меньше, чем выходное напряжение.
  • Конденсатор, играющий роль своеобразного фильтра, выравнивает эти перепады питания, преобразуя форму напряжения в практически идеальную форму графика. Емкость конденсатора должна находиться в пределах 1-10 тысяч мкФ. Напряжение должно быть тоже выше входной величины.

Нельзя забывать о следующем эффекте, что после электролитического конденсатора (фильтра) и диодного выпрямительного моста переменное напряжение повышается на величину около 18%. А значит, что в результате получается не 12 В на выходе, а около 14,5 В.

Действие стабилитрона

Следующим этапом работы является работа стабилитрона для стабилизации постоянного напряжения в конструкции стабилизатора. Он является главным функциональным звеном. Нельзя забывать, что стабилитроны могут в определенных пределах выдерживать стабильность на некотором постоянном напряжении при обратном подключении. Если подать напряжение на стабилитрон от нуля до стабильного значения, то оно будет повышаться.

Когда оно дойдет до стабильного уровня, то останется постоянным, с небольшим возрастанием. При этом будет увеличиваться сила тока, проходящего по нему.

В рассматриваемой схеме обычного стабилизатора, у которого выходное напряжение должно быть 12 В, стабилитрон определен для величины напряжения 12,6 В, так как 0,6 В будет являться потерей напряжения на переходе транзистора эмиттер – база. Выходное напряжение на приборе будет именно 12 В. А так как мы устанавливаем стабилитрон на величину 13 В, на выходе блока получится примерно 12,4 вольта.

Стабилитрон требует ограничения тока, предохраняющего его от излишнего нагревания. Судя по схеме, эту функцию осуществляет сопротивление R1. Оно включено по последовательной схеме со стабилитроном VD2. Другой конденсатор, выполняющий функцию фильтра, подключен параллельно стабилитрону. Он должен выравнивать возникающие импульсы напряжения. Хотя можно вполне обойтись и без него.

На схеме изображен транзистор VТ1, подключенный с общим коллектором. Такие схемы характеризуются значительным усилением тока, однако при этом по напряжению усиления нет. Отсюда следует, что на выходе транзистора образуется постоянное напряжение, имеющееся на входе. Так как эмиттерный переход забирает на себя 0,6 В, то на выходе транзистора получается всего 12,4 В.

Для того, чтобы транзистор стал открываться, необходим резистор для образования смещения. Такую функцию выполняет сопротивление R1. Если изменять его величину, то можно изменять выходной ток транзистора, а, следовательно, и выходной ток стабилизатора. В качестве эксперимента можно вместо резистора R1 подключить переменный резистор на 47 кОм. Регулируя его можно изменять выходную силу тока блока питания.

В конце схемы стабилизатора напряжения подключен еще один маленький конденсатор электролитического типа С3, который выравнивает импульсы напряжения на выходе стабилизированного устройства. К нему припаян по параллельной схеме резистор R2, который замыкает эмиттер VТ1 на отрицательный полюс схемы.

Заключение

Эта схема наиболее простая, включает в себя наименьшее количество элементов, создает стабильное напряжение на выходе. Для работы множества электрических устройств этого стабилизатора вполне достаточно. Такой транзистор и стабилитрон рассчитаны на наибольшую силу тока 8 А. Значит, что для подобного тока необходим охлаждающий радиатор, отводящий тепло от полупроводников.

Для чаще всего применяются стабилитроны, транзисторы и стабисторы. Они имеют пониженный КПД, поэтому используются только в маломощных схемах. Чаще всего они применяются в качестве источников основного напряжения в схемах компенсации стабилизаторов напряжения. Такие параметрические стабилизаторы бывают мостовыми, многокаскадными и однокаскадными. Это наиболее простые схемы стабилизаторов, построенных на основе стабилитрона и других полупроводниковых элементов.

В этой статье пойдёт речь о стабилизаторах постоянного напряжения на полупроводниковых приборах. Рассмотрены наиболее простые схемы стабилизаторов напряжения, принципы их работы и правила расчёта. Изложенный в статье материал полезен для конструирования источников вторичного стабилизированного питания.

Начнём с того, что для стабилизации любого электрического параметра должна быть схема слежения за этим параметром и схема управления этим параметром. Для точности стабилизации необходимо наличие «эталона», с которым стабилизируемый параметр сравнивается. Если в ходе сравнения оказывается, что параметр больше эталонного значения, то схема слежения (назовём её схемой сравнения) даёт команду на схему управления «уменьшить» значение параметра. И наоборот, если параметр оказывается меньше эталонного значения, то схема сравнения даёт команду на схему управления «увеличить» значение параметра. На этом принципе работают все схемы автоматического управления всех устройств и систем, которые нас окружают, от утюга, до космического аппарата, разница лишь в способе контроля и управления параметром. Точно так же работает стабилизатор напряжения.

Структурная схема такого стабилизатора изображена на рисунке.

Работу стабилизатора можно сравнить с регулировкой воды, бегущей из водопроводного крана. Человек подходит к крану, открывает его, а потом, наблюдая за потоком воды, регулирует его подачу в большую, или меньшую сторону, добиваясь оптимального для себя потока. Сам человек выполняет функцию схемы сравнения, в качестве эталона выступает представление человека о том, какой поток воды должен быть, а в качестве схемы управления выступает водопроводный кран, который управляется схемой сравнения (человеком). Если человек изменит своё представление об эталоне, решив, что поток воды, бегущий из крана недостаточный, то он откроет его больше. В стабилизаторе напряжения точно так же. Если у нас появляется желание изменить выходное напряжение, тогда мы можем изменить эталонное (опорное) напряжение. Схема сравнения, заметив изменение эталонного напряжения, самостоятельно изменит и выходное напряжение.

Резонным будет вопрос: Зачем нам такое нагромождение схем, если можно на выходе использовать источник уже «готового» эталонного напряжения? Дело в том, что источник эталонного (далее по тексту – опорного) напряжения – слаботочный (низкоамперный), поэтому не способен питать мощную (низкоомную) нагрузку. Такой источник опорного напряжения можно использовать в качестве стабилизатора для питания схем и устройств, потребляющих малый ток – КМОП-микросхем, слаботочных усилительных каскадов и др.

Схема источника опорного напряжения (слаботочного стабилизатора) изображена ниже. По своей сути – это специальный делитель напряжения, описанный в статье Делитель напряжения , отличие его в том, что в качестве второго резистора используется специальный диод – стабилитрон. В чём особенность стабилитрона? Простыми словами, стабилитрон, это такой диод, который в отличие от обычного выпрямительного диода, при достижении определённого значения обратно приложенного напряжения (напряжения стабилизации) пропускает ток в обратном направлении, а при его дальнейшем повышении, уменьшая своё внутреннее сопротивление, стремится удержать его на определённом значении.

На вольтамперной характеристике (ВАХ) стабилитрона режим стабилизации напряжения изображен в отрицательной области прикладываемого напряжения и тока.

По мере увеличения обратного напряжения, прикладываемого к стабилитрону, он сначала «сопротивляется» и ток, протекающий через него минимален. При определённом напряжении, ток стабилитрона начинает увеличиваться. Достигается такая точка вольтамперной характеристики (точка 1 ), после которой дальнейшее увеличение напряжения на делителе «резистор – стабилитрон» не вызывает увеличения напряжения на p-n переходе стабилитрона. На этом участке ВАХ происходит увеличение напряжения лишь на резисторе. Ток, проходящий через резистор и стабилитрон продолжает расти. От точки 1 , соответствующей минимальному току стабилизации, до определённой точки 2 вольтамперной характеристики, соответствующей максимальному току стабилизации стабилитрон работает в требуемом режиме стабилизации (зелёный участок ВАХ). После точки 2 вольтамперной характеристики стабилитрон теряет свои «полезные» свойства, начинает греться и может выйти из строя. Участок от точки 1 до точки 2 является рабочим участком стабилизации, на котором стабилитрон выступает в качестве регулятора.

Зная, как рассчитывается простейший делитель напряжения на резисторах можно элементарно рассчитать цепь стабилизации (источник опорного напряжения). Как и в делителе напряжения, в цепи стабилизации протекают два тока – ток делителя (стабилизатора) I ст и ток нагрузочной цепи I нагр . В целях «качественной» стабилизации последний должен быть на порядок меньше первого.

Для расчётов цепи стабилизации используются значения параметров стабилитронов, публикуемые в справочниках:

  • Напряжение стабилизации U ст ;
  • Ток стабилизации I ст (обычно — средний);
  • Минимальный ток стабилизации I ст.min ;
  • Максимальный ток стабилизации I ст.max .

Для расчёта стабилизатора, как правило, используются только два первых параметра — U ст , I ст , остальные применяются для расчёта схем защиты по напряжению, в которых возможно значительное изменение входного напряжения.

Для повышения напряжения стабилизации можно использовать цепочку из последовательно соединённых стабилитронов, но для этого, допустимый ток стабилизации таких стабилитронов должен быть в пределах параметров I ст.min и I ст.max , иначе существует вероятность выхода стабилитронов из строя.

Следует добавить, что простые выпрямительные диоды также обладают свойствами стабилизации обратно приложенного напряжения, только значения напряжений стабилизации лежат на более высоких значениях обратно приложенного напряжения. Значения максимального обратно приложенного напряжения выпрямительных диодов обычно указывается в справочниках, а напряжение при котором проявляется явление стабилизации обычно выше этого значения и для каждого выпрямительного диода, даже одного типа, различно. Поэтому, используйте выпрямительные диоды в качестве стабилитрона высоковольтного напряжения только в самом крайнем случае, когда не сможете найти необходимый Вам стабилитрон, или сделать цепочку из стабилитронов. В этом случае, напряжение стабилизации определяется экспериментально. Необходимо соблюдать осторожность при работе с высоким напряжением.

Порядок расчёта стабилизатора напряжения (источника опорного напряжения)

Расчет простейшего стабилизатора напряжения мы проведём с рассмотрением конкретного примера.

Исходные, предъявляемые к схеме параметры:

1. Входное напряжение делителя — U вх (может быть стабилизированным, а может и нет). Допустим, что U вх = 25 вольт;

2. Выходное напряжение стабилизации — U вых (опорное напряжение). Допустим, что нам необходимо получить U выx = 9 вольт.

Решение:

1. Исходя из необходимого напряжения стабилизации, по справочнику подбирают необходимый стабилитрон. В нашем случае это Д814В .

2. Из таблицы находят средний ток стабилизации — I ст . По таблице он равен 5 мА.

3. Вычисляют напряжение, падающее на резисторе — U R1 , как разность входного и выходного стабилизированного напряжения.

U R1 = U вx — U выx —> U R1 = 25 – 9 = 16 вольт

4. По закону Ома делят это напряжение на ток стабилизации, протекающий через резистор, и получают значение сопротивления резистора.

R1 = U R1 / I ст —> R1 = 16 / 0,005 = 3200 Ом = 3,2 кОм

Если полученного значения нет в резистивном ряде, выберите ближайший по номиналу резистор. В нашем случае это резистор номиналом 3,3 кОм .

5. Вычисляют минимальную мощность резистора, помножив падение напряжения на нём на протекающий ток (ток стабилизации).

Р R1 = U R1 * I ст —> Р R1 = 16 * 0,005 = 0,08 Вт

Учитывая, что через резистор кроме тока стабилитрона протекает ещё и выходной ток, поэтому выбирают резистор, мощностью не менее, чем в два раза больше вычисленной. В нашем случае это резистор мощностью не меньшей 0,16 Вт . По ближайшему номинальному ряду (в большую сторону) это соответствует мощности 0,25 Вт .

Вот и весь расчёт.

Как было написано ранее, простейшую цепочку стабилизатора постоянного напряжения можно использовать для питания схем, в которых используют малые токи, а для питания более мощных схем они не годятся.

Одним из вариантов повышения нагрузочной способности стабилизатора постоянного напряжения является использование эмиттерного повторителя. На схеме изображён каскад стабилизации на биполярном транзисторе. Транзистор «повторяет» приложенное к базе напряжение.

Нагрузочная способность такого стабилизатора возрастает на порядок. Недостатком такого стабилизатора, как и простейшей цепочки состоящей из резистора и стабилитрона, является невозможность регулировки выходного напряжения.

Выходное напряжение такого каскада будет меньше напряжения стабилизации стабилитрона на значение падения напряжения на p-n переходе «база – эмиттер» транзистора. В статье Биполярный транзистор , я писал, что для кремниевого транзистора оно равно – 0,6 … 0,7 вольта, для германиевого транзистора – 0,2 … 0,3 вольта. Обычно грубо считают – 0,65 вольта и 0,25 вольта.

Поэтому, например при использовании кремниевого транзистора, напряжении стабилизации стабилитрона равном 9 вольт, выходное напряжение будет на 0,65 вольта меньше, т.е – 8,35 вольта.

Если вместо одного транзистора использовать составную схему включения транзисторов, то нагрузочная способность стабилизатора возрастёт ещё на порядок. Здесь также, как и в предыдущей схеме следует учитывать уменьшение выходного напряжения за счёт его падения на p-n переходах «база – эмиттер» транзисторов. В данном случае, при использовании двух кремниевых транзисторов, напряжении стабилизации стабилитрона равном 9 вольт, выходное напряжение будет уже на 1,3 вольта меньше (по 0,65 вольт на каждый транзистор), т.е – 7,7 вольта. Поэтому, при проектировании подобных схем необходимо учитывать такую особенность и подбирать стабилитрон с учётом потерь на переходах транзисторов.

R2 = U R2 / Iст.max * 50 —> R2 = 0,65 / 2,5 * 50 = 13 Ом

Рассчитанное таким образом сопротивление позволяет более эффективно гасить реактивную составляющую выходного транзистора и полноценно использовать мощностные способности обоих транзисторов. Не забывайте производить расчёт требуемой мощности резисторов, иначе всё сгорит в неподходящий момент. Выход из строя резистора R2 может привести к выходу из строя транзисторов и того, что Вы подключите в качестве нагрузки. Расчёт мощности стандартный, описанный на страничке Резистор .

Как выбрать транзистор для стабилизатора?

Основные параметры для транзистора в стабилизаторе напряжения: максимальный ток коллектора, максимальное напряжение «коллектор-эмитер» и максимальная мощность. Все эти параметры всегда имеются в справочниках.
1. При выборе транзистора необходимо учитывать, что паспортный (по справочнику) максимальный ток коллектора должен быть не менее, чем в полтора раза больше максимального тока нагрузки, который вы хотите получить на выходе стабилизатора. Это делается для того, чтобы обеспечить запас по току нагрузки при случайных кратковременных бросках нагрузки (например короткого замыкания). При этом следует учесть, чем больше эта разница, тем менее массивный радиатор охлаждения требуется транзистору.

2. Максимальное напряжение «коллектор-эмитер» характеризует способность транзистора выдерживать определённое напряжение между коллектором и эмитером в закрытом состоянии. В нашем случае этот параметр должен также превышать не менее, чем в полтора раза напряжение подводимое к стабилизатору от цепи «трансформатор-выпрямитель-фильтр питания» вашего блока стабилизированного питания.

3. Паспортная выходная мощность транзистора должна обеспечивать работу транзистора в режиме «полуоткрытого» состояния. Всё напряжение, которое вырабатывается цепочкой «трансформатор-выпрямительный мост-фильтр питания» делится на две нагрузки: собственно нагрузка вашего блока стабилизированного питания и сопротивление коллекторно-эмитерного перехода транзистора. По обоим нагрузкам течёт один и тот же ток, поскольку они подключены последовательно, а вот напряжение делится. Из этого следует, что необходимо выбрать такой транзистор, который при заданном токе нагрузки способен выдерживать разницу между напряжением, вырабатываемым цепочкой «трансформатор-выпрямительный мост-фильтр питания» и выходным напряжением стабилизатора. Мощность вычисляется как произведение напряжения на ток (из учебника физики средней школы).

Например: На выходе цепи «трансформатор-выпрямительный мост-фильтр питания» (а значит на входе стабилизатора напряжения) напряжение равно 18 вольт. Нам необходимо получить выходное стабилизированное напряжение 12 вольт, при токе нагрузки 4 ампера.

Находим минимальное значение необходимого паспортного тока коллектора (Iк max):

4 * 1,5 = 6 ампер

Определяем минимальное значение необходимого напряжения «коллектор-эмитер» (Uкэ):

18 * 1,5 = 27 вольт

Находим среднее напряжение, которое в рабочем режиме будет «падать» на переходе «коллектор-эмитер», и тем самым поглощаться транзистором:

18 — 12 = 6 вольт

Определяем потребную номинальную мощность транзистора:

6 * 4 = 24 ватт

При выборе типа транзистора необходимо учитывать, что паспортная (по справочнику) максимальная мощность транзистора должна быть не менее, чем в два — три раза больше номинальной мощности падающей на транзисторе. Это делается для того, чтобы обеспечить запас по мощности при различных бросках тока нагрузки (а следовательно и изменения падающей мощности). При этом следует учесть, чем больше эта разница, тем менее массивный радиатор охлаждения требуется транзистору.

В нашем случае необходимо выбрать транзистор с паспортной мощностью (Рк) не менее:

24 * 2 = 48 ватт

Выбираете любой транзистор, удовлетворяющий этим условиям, с учётом, что чем паспортные параметры будут намного больше расчётных, тем меньше по размерам потребуется радиатор охлаждения (а может и вообще не нужен будет). Но при чрезмерном превышении этих параметров учитывайте тот факт, что чем больше выходная мощность транзистора, тем меньше его коэффициент передачи (h21), а это ухудшает коэффициент стабилизации в источнике питания.

В следующей статье мы рассмотрим компенсационный стабилизатор напряжения непрерывного действия . В нём используется принцип контроля выходного напряжения мостовой схемой. Он обладает меньшей пульсацией выходного напряжения, чем «эмиттерный повторитель», кроме того, он позволяет регулировать выходное напряжение в небольших пределах. На его основе будет рассчитана простая схема стабилизированного блока питания.