Украшения. Аксессуары. Дизайн ногтей. Цвета. Нанесение. Ногти

Длинная цепь питания. Цепь питания: понятие и графическое изображение

  • Вопрос 11. Живое вещество. Назовите и охарактеризуйте свойства живого вещества.
  • Вопрос 12. Живое вещество. Функции живого вещества.
  • Вопрос 13. С какой функцией живого вещества связывают Первую и Вторую точку Пастера.
  • Вопрос 14. Биосфера. Назовите и охарактеризуйте основные свойства биосферы.
  • Вопрос 15. В чем сущность принципа Ле Шателье – Брауна.
  • Вопрос 16. Сформулируйте закон Эшби.
  • Вопрос 17. Что является основой динамического равновесия и устойчивости экосистем. Устойчивость и саморегуляция экосистемы
  • Вопрос 18. Круговорот веществ. Типы круговоротов веществ.
  • Вопрос 19. Изобразите и поясните блоковую модель экосистемы.
  • Вопрос 20. Биом. Назовите наиболее крупные наземные биомы.
  • Вопрос 21. В чем сущность «правила краевого эффекта».
  • Вопрос 22. Виды эдификаторы, доминанты.
  • Вопрос 23. Трофическая цепь. Автотрофы, гетеротрофы, редуценты.
  • Вопрос 24. Экологическая ниша. Правило конкурентного исключения г. Ф. Гаузе.
  • Вопрос 25. Представьте в виде уравнения баланс пищи и энергии для живого организма.
  • Вопрос 26. Правило 10%, кто сформулировал и когда.
  • Вопрос 27. Продукция. Первичная и Вторичная продукция. Биомасса организма.
  • Вопрос 28. Пищевая цепь. Типы пищевых цепей.
  • Вопрос 29. Для чего используют экологические пирамиды, назовите их.
  • Вопрос 30. Сукцессии. Первичная и вторичная сукцессия.
  • Вопрос 31. Назовите последовательные стадии первичной сукцессии. Климакс.
  • Вопрос 32. Назовите и охарактеризуйте этапы воздействия человека на биосферу.
  • Вопрос 33. Ресурсы биосферы. Классификация ресурсов.
  • Вопрос 34. Атмосфера – состав, роль в биосфере.
  • Вопрос 35. Значение воды. Классификация вод.
  • Классификация подземных вод
  • Вопрос 36. Биолитосфера. Ресурсы биолитосферы.
  • Вопрос 37. Почва. Плодородие. Гумус. Образование почвы.
  • Вопрос 38. Ресурсы растительности. Лесные ресурсы. Ресурсы животного мира.
  • Вопрос 39. Биоценоз. Биотоп. Биогеоценоз.
  • Вопрос 40. Факториальная и популяционная экология, синэкология.
  • Вопрос 41. Назовите и охарактеризуйте экологические факторы.
  • Вопрос 42. Биогеохимические процессы. Как осуществляется круговорот азота.
  • Вопрос 43. Биогеохимические процессы. Как осуществляется круговорот кислорода. Круговорот кислорода в биосфере
  • Вопрос 44. Биогеохимические процессы. Как осуществляется круговорот углерода.
  • Вопрос 45. Биогеохимические процессы. Как осуществляется круговорот воды.
  • Вопрос 46. Биогеохимические процессы. Как осуществляется круговорот фосфора.
  • Вопрос 47. Биогеохимические процессы. Как осуществляется круговорот серы.
  • Вопрос 49. Энергетический баланс биосферы.
  • Вопрос 50. Атмосфера. Назовите слои атмосферы.
  • Вопрос 51. Виды загрязнителей атмосферы.
  • Вопрос 52. Как происходит естественное загрязнение атмосферы.
  • Вопрос 54. Основные ингредиенты загрязнения атмосферы.
  • Вопрос 55. Какие газы вызывают парниковый эффект. Последствия увеличения парниковых газов в атмосфере.
  • Вопрос 56. Озон. Озоновая дыра. Какие газы вызывают разрушение озонового слоя. Последствия для живых организмов.
  • Вопрос 57. Причины образования и выпадения кислотных осадков. Какие газы вызывают образование кислотных осадков. Последствия.
  • Последствия кислотных дождей
  • Вопрос 58. Смог, его образование и влияние на человека.
  • Вопрос 59. Пдк, разовая пдк, среднесуточная пдк. Пдв.
  • Вопрос 60. Для чего используют пылеуловители. Типы пылеуловителей.
  • Вопрос 63. Назовите и охарактеризуйте методы очистки воздуха от паро - и газообразных загрязнителей.
  • Вопрос 64. Чем метод абсорбции отличается от метода адсорбции.
  • Вопрос 65. От чего зависит выбор метода очистки газа.
  • Вопрос 66. Назовите, какие газы образуются при сгорании топлива автотранспорта.
  • Вопрос 67. Пути очистки выхлопных газов от автотранспорта.
  • Вопрос 69. Качество воды. Критерии качества воды. 4 класса воды.
  • Вопрос 70. Норма водопотребления и водоотведения.
  • Вопрос 71. Назовите физико-химические и биохимические методы очистки воды. Физико-химический метод очистки воды
  • Коагуляция
  • Выбор коагулянта
  • Органические коагулянты
  • Неорганические коагулянты
  • Вопрос 72. Сточная вода. Охарактеризуйте гидромеханические методы очистки сточных вод от твердых примесей (процеживание, отстаивание, фильтрование).
  • Вопрос 73. Охарактеризуйте химические методы очистки сточных вод.
  • Вопрос 74. Охарактеризуйте биохимические методы очистки сточных вод. Достоинства и недостатки этого метода.
  • Вопрос 75. Аэротенки. Классификация аэротенков.
  • Вопрос 76. Суша. Два вида вредного воздействия на почву.
  • Вопрос 77. Назовите мероприятия по охране почв от загрязнений.
  • Вопрос 78. Утилизация и переработка отходов.
  • 3.1.Огневой способ.
  • 3.2. Технологии высокотемпературного пиролиза.
  • 3.3. Плазмохимическая технология.
  • 3.4.Использование вторичных ресурсов.
  • 3.5 Захоронение отходов
  • 3.5.1.Полигоны
  • 3.5.2 Изоляторы, подземные хранилища.
  • 3.5.3.Заполнение карьеров.
  • Вопрос 79. Назовите международные природоохранные организации. Межправительственные экологические организации
  • Вопрос 80. Назовите международные экологические движения. Неправительственные международные организации
  • Вопрос 81. Назовите природоохранные организации рф.
  • Международный союз охраны природы (мсоп) в россии
  • Вопрос 82. Виды природоохранных мероприятий.
  • 1. Природоохранные мероприятия в области охраны и рационального использования водных ресурсов:
  • 2. Природоохранные мероприятия в области охраны атмосферного воздуха:
  • 3. Природоохранные мероприятия в области охраны и рационального использования земельных ресурсов:
  • 4. Природоохранные мероприятия в области управления отходами:
  • 5. Энергосберегающие мероприятия:
  • Вопрос 83. Почему Всемирный день охраны природы отмечается 5 июня.
  • Вопрос 85. Устойчивое развитие. Правовая охрана биосферы.
  • Правовая охрана биосферы
  • Вопрос 86. Финансирование природоохранных мероприятий.
  • Вопрос 87. Экологическое нормирование. Экологический мониторинг. Экологическая экспертиза.
  • Вопрос 88. Экологические правонарушения. Ответственность за экологические правонарушения.
  • Вопрос 89. Рациональное природопользование.
  • Рациональное природопользование
  • Вопрос 90. Глобальные экологические проблемы и меры по предотвращению экологической угрозы.
  • Вопрос 91. Какие горючие газы являются компонентами газообразного топлива.
  • Вопрос 92. Охарактеризуйте следующие газы и их влияние на человека: метан, пропан, бутан.
  • Физические свойства
  • Химические свойства
  • Применение пропана
  • Вопрос 93. Охарактеризуйте следующие газы и их влияние на человека: этилен, пропилен, сероводород.
  • Вопрос 94. В результате чего образуется диоксид углерода и оксид углерода, их влияние на живые организмы.
  • Вопрос 95. В результате чего образуется оксид азота, оксид серы и пары воды, их влияние на живые организмы.
  • Вопрос 28. Пищевая цепь. Типы пищевых цепей.

    ПИЩЕВАЯ ЦЕПЬ (трофическая цепь, цепь питания), взаимосвязь организмов через отношения пища – потребитель (одни служат пищей для других). При этом происходит трансформация вещества и энергии от продуцентов (первичных производителей) черезконсументов (потребителей) к редуцентам (преобразователям мёртвой органики в неорганические вещества, усваиваемые продуцентами). Различают 2 типа пищевых цепей – пастбищную и детритную. Пастбищная цепь начинается с зелёных растений, идёт к пасущимся растительноядным животным (консументы 1-го порядка) и затем к хищникам, добывающим этих животных (в зависимости от места в цепи – консументы 2-го и последующих порядков). Детритная цепь начинается с детрита (продукт распада органики), идёт к микроорганизмам, которые им питаются, а затем к детритофагам (животные и микроорганизмы, вовлечённые в процесс разложения отмирающей органики).

    Примером пастбищной цепи может служить многоканальная её модель в африканской саванне. Первичными продуцентами являются травостой и деревья, консументами 1-го порядка – растительноядные насекомые и травоядные животные (копытные, слоны, носороги и др.), 2-го порядка – хищные насекомые, 3-го – плотоядные пресмыкающиеся (змеи и др.), 4-го – хищные млекопитающие и хищные птицы. В свою очередь детритофаги (жуки-скарабеи, гиены, шакалы, грифы и т. д.) на каждом из этапов пастбищной цепи разрушают туши погибших животных и остатки пищи хищников. Количество особей, включённых в пищевую цепь, в каждом её звене последовательно уменьшается (правило экологической пирамиды), т. е. число жертв всякий раз существенно превышает число их потребителей. Пищевые цепи не изолированы одна от другой, а переплетаются друг с другом, образуя пищевые сети.

    Вопрос 29. Для чего используют экологические пирамиды, назовите их.

    Экологическая пирамида - графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников; видов, питающихся другими хищниками) в экосистеме.

    Схематически изображать эти соотношения предложил американский зоолог Чарльз Элтон в 1927 году.

    При схематическом изображении каждый уровень показывают в виде прямоугольника, длина или площадь которого соответствует численным значениям звена пищевой цепи (пирамида Элтона), их массе или энергии. Расположенные в определенной последовательности прямоугольники создают различные по форме пирамиды.

    Основанием пирамиды служит первый трофический уровень - уровень продуцентов, последующие этажи пирамиды образованы следующими уровнями пищевой цепи - консументами различных порядков. Высота всех блоков в пирамиде одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне.

    Экологические пирамиды различают в зависимости от показателей, на основании которых строится пирамида. При этом для всех пирамид установлено основное правило, согласно которому в любой экосистеме больше растений, чем животных, травоядных, чем плотоядных, насекомых, чем птиц.

    На основе правила экологической пирамиды можно определить или рассчитать количественные соотношения разных видов растений и животных в естественных и искусственно создаваемых экологических системах. Например, 1 кг массы морского зверя (тюленя, дельфина) нужно 10 кг съеденной рыбы, а этим 10 кг нужно уже 100 кг их корма - водных беспозвоночных, которым в свою очередь для образования такой массы необходимо съедать 1000 кг водорослей и бактерий. В данном случае экологическая пирамида будет устойчива.

    Однако, как известно, из каждого правила бывают исключения, которые будут рассмотрены в каждом типе экологических пирамид.

    Первые экологические схемы в виде пирамид построил в двадцатых годах XX в. Чарлз Элтон. Они были основаны на полевых наблюдениях за рядом животных различных размерных классов. Элтон не включил в них первичных продуцентов и не делал никаких различий между детритофа-гами и редуцентами. Однако он отметил, что хищники обычно крупнее своих жертв, и понял, что такое соотношение крайне специфично лишь для определенных размерных классов животных. В сороковые годы американский эколог Реймонд Линдеман применил идею Элтона к трофическим уровням, абстрагировавшись от конкретных составляющих их организмов. Однако, если распределить животных по размерным классам легко, то определить, к какому трофическому уровню они относятся, гораздо сложнее. В любом случае сделать это можно лишь весьма упрощенно и обобщенно. Пищевые отношения и эффективность передачи энергии в биотическом компоненте экосистемы традиционно изображают в виде ступенчатых пирамид. Это дает наглядную основу для сопоставления: 1) разных экосистем; 2) сезонных состояний одной и той же экосистемы; 3) разных фаз изменения экосистемы. Существуют три типа пирамид: 1) пирамиды чисел, основанные на подсчете организмов каждого трофического уровня; 2) пирамиды биомассы, в которых используется суммарная масса (обычно сухая) организмов на каждом трофическом уровне; 3) пирамиды энергии, учитывающие энергоемкость организмов каждого трофического уровня.

    Типы экологических пирамид

    пирамиды чисел - на каждом уровне откладывается численность отдельных организмов

    Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис.3).

    Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. В данном случае пирамида будет иметь вид треугольника с широким основанием суживающимся кверху.

    Однако подобная форма пирамиды чисел характерна не для всех экосистем. Иногда они могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых), поэтому пирамиды чисел наименее информативны и наименее показательны, т.е. численность организмов одного трофического уровня в значительной степени зависит от их размеров.

    пирамиды биомасс - характеризует общую сухую или сырую массу организмов на данном трофическом уровне, например, в единицах массы на единицу площади - г/м 2 , кг/га, т/км 2 или на объем - г/м 3 (рис.4)

    Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д.

    В данном случае (если организмы не слишком различаются по размерам) пирамида также будет иметь вид треугольника с широким основанием суживающимся кверху. Однако и из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2-3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

    В целом для наземных биогеоценозов, где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.

    Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.

    Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

    пирамиды энергии - показывает величину потока энергии или продуктивности на последовательных уровнях (рис.5).

    В противоположность пирамидам чисел и биомассы, отражающим статику системы (количество организмов в данный момент), пирамида энергии отражая картину скоростей прохождения массы пищи (количества энергии) через каждый трофический уровень пищевой цепи, дает наиболее полное представление о функциональной организации сообществ.

    На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей, и если учтены все источники энергии, то пирамида всегда будет иметь типичный вид с широким основанием и суживающейся верхушкой. При построении пирамиды энергии в ее основание часто добавляют прямоугольник, показывающий приток солнечной энергии.

    В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

    Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

    В природе любой вид, популяция и даже отдельная особь живут не изолированно друг от друга и среды своего обитания, а, напротив, испытывают многочисленные взаимные влияния. Биотические сообщества или биоценозы - сообщества взаимодействующих живых организмов, представляющие собой устойчивую систему, связанную многочисленными внутренними связями, с относительно постоянной структурой и взаимообусловленным набором видов.

    Для биоценоза характерны определенные структуры : видовая, пространственная и трофическая.

    Органические компоненты биоценоза неразрывно связаны с неорганическими - почвой, влагой, атмосферой, образуя вместе с ними устойчивую экосистему - биогеоценоз .

    Биогеноценоз – саморегулирующаяся экологическая система, образованная совместно обитающими и взаимодействующими между собой и с неживой природой, популяциями разных видов в относительно однородных условиях среды.

    Экологические системы

    Функциональные системы, включающие в себя сообщества живых организмов разных видов и их среду обитания. Связи между компонентами экосистемы возникают, прежде всего, на основе пищевых взаимоотношений и способов получения энергии.

    Экосистема

    Совокупность видов растений, животных, грибов, микроорганизмов, взаимодействующих между собой и с окружающей средой таким образом, что такое сообщество может сохраняться и функционировать необозримо длительное время. Биотическое сообщество (биоценоз) состоит из сообщества растений (фитоценоз ), животных (зооценоз ), микроорганизмов (микробоценоз ).

    Все организмы Земли и среда их обитания также представляют собой экосистему высшего ранга - биосферу , обладающую устойчивостью и другими свойствами экосистемы.

    Существование экосистемы возможно благодаря постоянному притоку энергии извне - таким источником энергии, как правило, является солнце, хотя не для всех экосистем это справедливо. Устойчивость экосистемы обеспечивается прямыми и обратными связями между ее компонентами, внутренним круговоротом веществ и участием в глобальных круговоротах.

    Учение о биогеоценозах разработано В.Н. Сукачевым. Термин «экосистема » введен в употребление английским геоботаником А. Тенсли в 1935 г., термин «биогеоценоз » - академиком В.Н. Сукачевым в 1942 г. В биогеоценозе обязательно наличие в качестве основного звена растительного сообщества (фитоценоз), обеспечивающего потенциальную бессмертность биогеоценоза за счет энергии, вырабатываемой растениями. Экосистемы могут не содержать фитоценоз.

    Фитоценоз

    Растительное сообщество, исторически сложившееся в результате сочетания взаимодействующих растений на однородном участке территории.

    Его характеризуют :

    - определенный видовой состав,

    - жизненные формы,

    - ярусность (надземная и подземная),

    - обилие (частота встречаемости видов),

    - размещение,

    - аспект (внешний вид),

    - жизненность,

    - сезонные изменения,

    - развитие (смена сообществ).

    Ярусность (этажность)

    Один из характерных признаков растительного сообщества, заключающийся как бы в поэтажном его разделении как в надземном, так и в подземном пространстве.

    Надземная ярусность позволяет лучше использовать свет, а подземная - воду и минеральные вещества. Обычно в лесу можно выделить до пяти ярусов: верхний (первый) - высокие деревья, второй - невысокие деревья, третий - кустарники, четвертый - травы, пятый - мхи.

    Подземная ярусность - зеркальное отражение надземной: глубже всех уходят корни деревьев, близ поверхности почвы расположены подземные части мхов.

    По способу получения и использования питательных веществ все организмы делятся на автотрофы и гетеротрофы . В природе возникает непрерывный круговорот биогенных веществ, необходимых для жизни. Химические вещества извлекаются автотрофами из окружающей среды и через гетеротрофы вновь в нее возвращаются. Этот процесс принимает очень сложные формы. Каждый вид использует лишь часть содержащейся в органическом веществе энергии, доводя его распад до определенной стадии. Таким образом, в процессе эволюции в экологических системах сложились цепи и сети питания .

    Большинство биогеоценозов имеют сходную трофическую структуру . Основу их составляют зеленые растения - продуценты. Обязательно присутствуют растительноядные и плотоядные животные: потребители органического вещества - консументы и разрушители органических остатков - редуценты .

    Количество особей в пищевой цепи последовательно уменьшается, численность жертв больше численности их потребителей, так как в каждом звене пищевой цепи при каждом переносе энергии 80-90% ее теряется, рассеиваясь в виде теплоты. Поэтому число звеньев в цепи ограничено (3-5).

    Видовое разнообразие биоценоза представлено всеми группами организмов - продуцентами, консументами и редуцентами.

    Нарушение какого-либо звена в цепи питания вызывает нарушение биоценоза в целом. Например, вырубка леса приводит к изменению видового состава насекомых, птиц, а, следовательно, и зверей. На безлесном участке будут складываться другие цепи питания и сформируется другой биоценоз, что займет не один десяток лет.

    Цепь питания (трофическая или пищевая )

    Взаимосвязанные виды, последовательно извлекающие органическое вещество и энергию из исходного пищевого вещества; при этом каждое предыдущее звено цепи является пищей для последующего.

    Цепи питания в каждом природном участке с более или менее однородными условиями существования составлены комплексами взаимосвязанных видов, питающимися друг другом и образующими самоподдерживающуюся систему, в которой осуществляется круговорот веществ и энергии.

    Компоненты экосистемы:

    - Продуценты - автотрофные организмы (в основном зеленые растения) - единственные производители органического вещества на Земле. Богатое энергией органическое вещество в процессе фотосинтеза синтезируется из бедных энергией неорганических веществ (Н 2 0 и С0 2).

    - Консументы - растительноядные и плотоядные животные, потребители органического вещества. Консументы могут быть растительноядными, когда они непосредственно используют продуценты, или плотоядными, когда они питаются другими животными. В цепи питания они чаще всего могут иметь порядковый номер с I по IV .

    - Редуценты - гетеротрофные микроорганизмы (бактерии) и грибы - разрушители органических остатков, деструкторы. Их еще называют санитарами Земли.

    Трофический (пищевой) уровень - совокупность организмов, объединяемых типом питания. Представление о трофическом уровне позволяет понять динамику потока энергии в экосистеме.

    1. первый трофический уровень всегда занимают продуценты (растения),
    2. второй - консументы I порядка (растительноядные животные),
    3. третий - консументы II порядка - хищники, питающиеся растительноядными животными),
    4. четвертый - консументы III порядка (вторичные хищники).

    Различают следующие виды пищевых цепей:

    В пастбищной цепи (цепи выедания ) основным источником пищи служат зеленые растения. Например: трава -> насекомые -> земноводные -> змеи -> хищные птицы.

    - детритные цепи (цепи разложения) начинаются с детрита - отмершей биомассы. Например: листовой опад -> дождевые черви -> бактерии. Особенностью детритных цепей является также то, что в них часто продукция растений не потребляется непосредственно растительноядными животными, а отмирает и минерализуется сапрофитами. Детритные цепи характерны также для экосистем океанических глубин, обитатели которых питаются мертвыми организмами, опустившимися вниз из верхних слоев воды.

    Сложившиеся в процессе эволюции взаимоотношения между видами в экологических системах, при которых многие компоненты питаются разными объектами и сами служат пищей различным членам экосистемы. Упрощенно пищевую сеть можно представить как систему переплетающихся пищевых цепей .

    Организмы разных пищевых цепей, получающие пищу через равное число звеньев этих цепей, находятся на одном трофическом уровне . В то же время разные популяции одного и того же вида, входящие в различные пищевые цепи, могут находиться на разных трофических уровнях . Соотношение различных трофических уровней в экосистеме можно изобразить графически в виде экологической пирамиды .

    Экологическая пирамида

    Способ графического отображения соотношения различных трофических уровней в экосистеме - бывает трех типов :

    Пирамида численности отражает численность организмов на каждом трофическом уровне;

    Пирамида биомасс отражает биомассу каждого трофического уровня;

    Пирамида энергии показывает количество энергии, прошедшее через каждый трофический уровень в течение определенного промежутка времени.

    Правило экологической пирамиды

    Закономерность, отражающая прогрессивное уменьшение массы (энергии, числа особей) каждого последующего звена пищевой цепи.

    Пирамида численности

    Экологическая пирамида, отражающая число особей на каждом пищевом уровне. В пирамиде чисел не учитываются размеры и масса особей, продолжительность жизни, интенсивность обмена веществ, однако всегда прослеживается главная тенденция - уменьшение числа особей от звена к звену. Например, в степной экосистеме численность особей распределяется так: продуценты - 150000, травоядные консументы - 20000, плотоядные консументы - 9000 экз./ар. Биоценоз луга характеризуется следующей численностью особей на площади 4000 м 2: продуценты - 5 842 424, растительноядные консументы I порядка - 708 624, плотоядные консументы II порядка - 35 490, плотоядные консументы III порядка - 3.

    Пирамида биомасс

    Закономерность, согласно которой количество растительного вещества, служащего основой цепи питания (продуцентов), примерно в 10 раз больше, чем масса растительноядных животных (консументов I порядка), а масса растительноядных животных в 10 раз больше, чем плотоядных (консументов II порядка), т. е. каждый последующий пищевой уровень имеет массу в 10 раз меньшую, чем предыдущий. В среднем из 1000 кг растений образуется 100 кг тела травоядных животных. Хищники, поедающие травоядных, могут построить 10 кг своей биомассы, вторичные хищники - 1 кг.

    Пирамида энергии

    выражает закономерность, согласно которой поток энергии постепенно уменьшается и обесценивается при переходе от звена к звену в цепи питания. Так, в биоценозе озера зеленые растения - продуценты - создают биомассу, содержащую 295,3 кДж/см 2 , консументы I порядка, потребляя биомассу растений, создают свою биомассу, содержащую 29,4 кДж/см 2 ; консументы II порядка, используя в пищу консументов I порядка, создают свою биомассу, содержащую 5,46 кДж/см 2 . Потеря энергии при переходе от консументов I порядка к консументам II порядка, если это теплокровные животные, увеличивается. Это объясняется тем, что у данных животных много энергии уходит не только на построение своей биомассы, но и на поддержание постоянства температуры тела. Если сравнить выращивание теленка и окуня, то одинаковое количество затраченной пищевой энергии даст 7 кг говядины и лишь 1 кг рыбы, так как теленок питается травой, а окунь-хищник - рыбой.

    Таким образом , первые два типа пирамид имеют ряд существенных недостатков:

    Пирамида биомасс отражает состояние экосистемы на момент отбора пробы и, следовательно, показывает соотношение биомассы в данный момент и не отражает продуктивность каждого трофического уровня (т. е. его способность образовывать биомассу в течение определенного промежутка времени). Поэтому в том случае, когда в число продуцентов входят быстрорастущие виды, пирамида биомасс может оказаться перевернутой.

    Пирамида энергии позволяет сравнить продуктивность различных трофических уровней, поскольку учитывает фактор времени. Кроме того, она учитывает разницу в энергетической ценности различных веществ (например, 1 г жира дает почти в два раза больше энергии, чем 1 г глюкозы). Поэтому пирамида энергии всегда суживается кверху и никогда не бывает перевернутой.

    Экологическая пластичность

    Степень выносливости организмов или их сообществ (биоценозов) к воздействию факторов среды. Экологически пластичные виды имеют широкую норму реакции , т. е. широко приспособлены к разной среде обитания (рыбы колюшка и угорь, некоторые простейшие живут как в пресных, так и в соленых водах). Узкоспециализированные виды могут существовать лишь в определенной среде: морские животные и водоросли - в соленой воде, речные рыбы и растения лотос, кувшинка, ряска обитают только в пресной воде.

    В целом экосистема (биогеоценоз) характеризуется следующими показателями :

    Видовым разнообразием,

    Плотностью видовых популяций,

    Биомассой.

    Биомасса

    Общее количество органического вещества всех особей биоценоза или вида с заключенной в нем энергией. Биомассу выражают обычно в единицах массы в пересчете на сухое вещество единицы площади или объема. Биомассу можно определить отдельно для животных, растений или отдельных видов. Так, биомасса грибов в почве составляет 0,05-0,35 т/га, водорослей - 0,06-0,5, корней высших растений - 3,0-5,0, дождевых червей - 0,2-0,5, позвоночных животных - 0,001-0,015 т/га.

    В биогеоценозах различают первичную и вторичную биологическую продуктивность :

    ü Первичная биологическая продуктивность биоценозов - общая суммарная продуктивность фотосинтеза, представляющая собой результат деятельности автотрофов - зеленых растений, например, сосновый лес 20- 30-летнего возраста за год производит 37,8 т/га биомассы.

    ü Вторичная биологическая продуктивность биоценозов - общая суммарная продуктивность гетеротрофных организмов (консументов), которая образуется за счет использования веществ и энергии, накопленных продуцентами.

    Популяции. Структура и динамика численности.

    Каждый вид на Земле занимает определенный ареал , так как он способен существовать лишь в определенных условиях среды. Однако условия обитания в рамках ареала одного вида могут существенно отличаться, что приводит к распаду вида на элементарные группировки особей - популяции.

    Популяция

    Совокупность особей одного вида, занимающих обособленную территорию в пределах ареала вида (с относительно однородными условиями обитания), свободно скрещивающихся друг с другом (имеющих общий генофонд) и изолированных от других популяций данного вида, обладающих всеми необходимыми условиями для поддержания своей стабильности длительное время в меняющихся условиях среды. Важнейшими характеристиками популяции являются ее структура (возрастной, половой состав) и динамика численности.

    Под демографической структурой популяции понимают ее половой и возрастной состав.

    Пространственная структура популяции - это особенности размещения особей популяции в пространстве.

    Возрастная структура популяции связана с соотношением особей различных возрастов в популяции. Особи одного возраста объединяют в когорты - возрастные группы.

    В возрастной структуре популяций растений выделяют следующие периоды :

    Латентный - состояние семени;

    Прегенеративный (включает состояния проростка, ювенильного растения, имматурного и виргинильного растений);

    Генеративный (обычно подразделяется на три подпериода - молодые, зрелые и старые генеративные особи);

    Постгенеративный (включает состояния субсенильного, сенильного растений и фазу отмирания).

    Принадлежность к определенному возрастному состоянию определяется по биологическому возрасту - степени выраженности определенных морфологических (например, степень расчлененности сложного листа) и физиологических (например, способность дать потомство) признаков.

    В популяциях животных также можно выделить различные возрастные стадии . Например, насекомые, развивающиеся с полным метаморфозом, проходят стадии:

    Личинки,

    Куколки,

    Имаго (взрослого насекомого).

    Характер возрастной структуры популяции зависит от типа кривой выживания, свойственной данной популяции.

    Кривая выживания отражает уровень смертности в различных возрастных группах и представляет собой снижающуюся линию:

    1. Если уровень смертности не зависит от возраста особей, отмирание особей происходит в данном типе равномерно, коэффициент смертности остается постоянным на протяжении всей жизни (тип I ). Такая кривая выживания свойственна видам, развитие которых происходит без метаморфоза при достаточной устойчивости рождающегося потомства. Этот тип принято называть типом гидры - для нее свойственна кривая выживания, приближающаяся к прямой линии.
    2. У видов, для которых роль внешних факторов в смертности невелика, кривая выживания характеризуется небольшим понижением до определенного возраста, после которого происходит резкое падение вследствие естественной (физиологической) смертности (тип II ). Близкий к этому типу характер кривой выживания свойствен человеку (хотя кривая выживания человека несколько более пологая и является чем-то средним между типами I и II). Этот тип носит название типа дрозофилы : именно его демонстрируют дрозофилы в лабораторных условиях (не поедаемые хищниками).
    3. Для очень многих видов характерна высокая смертность на ранних стадиях онтогенеза. У таких видов кривая выживания характеризуется резким падением в области младших возрастов. Особи, пережившие «критический» возраст, демонстрируют низкую смертность и доживают до старших возрастов. Тип носит название типа устрицы (тип III ).

    Половая структура популяции

    Соотношение полов имеет прямое отношение к воспроизводству популяции и ее устойчивости.

    Выделяют первичное, вторичное и третичное соотношение полов в популяции:

    - Первичное соотношение полов определяется генетическими механизмами - равномерностью расхождения половых хромосом. Например, у человека XY-хромосомы определяют развитие мужского пола, а XX - женского. В этом случае первичное соотношение полов 1:1, т. е. равновероятно.

    - Вторичное соотношение полов - это соотношение полов на момент рождения (среди новорожденных). Оно может существенно отличаться от первичного по целому ряду причин: избирательность яйцеклеток к сперматозоидам, несущим Х- или Y-хромосому, неодинаковой способностью таких сперматозоидов к оплодотворению, различными внешними факторами. Например, зоологами описано влияние температуры на вторичное соотношение полов у рептилий. Аналогичная закономерность характерна и для некоторых насекомых. Так, у муравьев оплодотворение обеспечивается при температуре выше 20 °С, а при более низких температурах откладываются неоплодотворенные яйца. Из последних вылупляются самцы, а из оплодотворенных - преимущественно самки.

    - Третичное соотношение полов - соотношение полов среди взрослых животных.

    Пространственная структура популяции отражает характер размещения особей в пространстве.

    Выделяют три основных типа распределения особей в пространстве:

    - единообразное или равномерное (особи размещены в пространстве равномерно, на одинаковых расстояниях друг от друга); встречается в природе редко и чаще всего вызвано острой внутривидовой конкуренцией (например, у хищных рыб);

    - конгрегационное или мозаичное («пятнистое», особи размещаются в обособленных скоплениях); встречается намного чаше. Оно связано с особенностями микросреды или поведения животных;

    - случайное или диффузное (особи распределены в пространстве случайным образом) - можно наблюдать только в однородной среде и только у видов, которые не обнаруживают никакого стремления к объединению в группы (например, у жука в муке).

    Численность популяции обозначается буквой N. Отношение прироста N к единице времени dN / dt выражает мгновенную скорость изменения численности популяции, т. е. изменение численности в момент времени t. Прирост популяции зависит от двух факторов - рождаемости и смертности при условии отсутствия эмиграции и иммиграции (такая популяция называется изолированной). Разность рождаемости b и смертности d и представляет собой коэффициент прироста изолированной популяции :

    Устойчивость популяции

    Это ее способность находиться в состоянии динамического (т. е. подвижного, изменяющегося) равновесия со средой: изменяются условия среды - изменяется и популяция. Одним из важнейших условий устойчивости является внутреннее разнообразие. Применительно к популяции это механизмы поддержания определенной плотности популяции.

    Выделяют три типа зависимости численности популяции от ее плотности .

    Первый тип (I) - самый распространенный, характеризуется уменьшением роста популяции при увеличении ее плотности, что обеспечивается различными механизмами. Например, для многих видов птиц характерны снижение рождаемости (плодовитости) при увеличении плотности популяции; увеличение смертности, снижение сопротивляемости организмов при повышенной плотности популяции; изменение возраста наступления половой зрелости в зависимости от плотности популяции.

    Третий тип ( III ) характерен для популяций, в которых отмечается «эффект группы», т. е. определенная оптимальная плотность популяции способствует лучшему выживанию, развитию, жизнедеятельности всех особей, что присуще большинству групповых и социальных животных. Например, для возобновления популяций разнополых животных как минимум необходима плотность, обеспечивающая достаточную вероятность встречи самца и самки.

    Тематические задания

    А1. Биогеоценоз образован

    1) растениями и животными

    2) животными и бактериями

    3) растениями, животными, бактериями

    4) территорией и организмами

    А2. Потребителями органического вещества в лесном биогеоценозе являются

    1) ели и березы

    2) грибы и черви

    3) зайцы и белки

    4) бактерии и вирусы

    А3. Продуцентами в озере являются

    2) головастики

    А4. Процесс саморегуляции в биогеоценозе влияет на

    1) соотношение полов в популяциях разных видов

    2) численность мутаций, возникающих в популяциях

    3) соотношение хищник – жертва

    4) внутривидовую конкуренцию

    А5. Одним из условий устойчивости экосистемы может служить

    1) ее способность к изменениям

    2) разнообразие видов

    3) колебания численности видов

    4) стабильность генофонда в популяциях

    А6. К редуцентам относятся

    2) лишайники

    4) папоротники

    А7. Если общая масса полученной потребителем 2-го порядка равна 10 кг, то какова была совокупная масса продуцентов, ставших источником пищи для данного потребителя?

    А8. Укажите детритную пищевую цепь

    1) муха – паук – воробей – бактерии

    2) клевер – ястреб – шмель – мышь

    3) рожь – синица – кошка – бактерии

    4) комар – воробей – ястреб – черви

    А9. Исходным источником энергии в биоценозе является энергия

    1) органических соединений

    2) неорганических соединений

    4) хемосинтеза

    1) зайцами

    2) пчелами

    3) дроздами-рябинниками

    4) волками

    А11. В одной экосистеме можно встретить дуб и

    1) суслика

    3) жаворонка

    4) синий василек

    А12. Сети питания – это:

    1) связи между родителями и потомством

    2) родственные (генетические) связи

    3) обмен веществ в клетках организма

    4) пути передачи веществ и энергии в экосистеме

    А13. Экологическая пирамида чисел отражает:

    1) соотношение биомасс на каждом трофическом уровне

    2) соотношение масс отдельного организма на разных трофических уровнях

    3) структуру пищевой цепи

    4) разнообразие видов на разных трофических уровнях


    Пищевая цепь – это последовательное превращение элементов неорганической природы (биогенных и др.) с помощью растений и света в органические вещества (первичную продукцию), а последних – животными организмами на последующих трофических (пищевых) звеньях (ступенях) в их биомассу.

    Пищевая цепь начинается с солнечной энергии, и каждое звено в цепи представляет собой изменение энергии. Все пищевые цепи в сообществе образуют трофические отношения.

    Между компонентами экосистемы существуют разнообразные связи, и в первую очередь их связывает воедино поток энергии и круговорот вещества. Каналы, по которым течет через сообщество энергия, носят имя цепей питания. Энергия солнечного луча, падающего на верхушки деревьев или на поверхность пруда, улавливается зелеными растениями — будь то огромные деревья или крошечные водоросли, — и используется ими в процессе фотосинтеза. Эта энергия идет на рост, развитие и размножение растений. Растения, как производителей органического вещества, называют продуцентами. Продуценты, в свою очередь, служат источником энергии для тех, кто питается растениями, а, в конечном счете, для всего сообщества.

    Первыми потребителями органического вещества являются растительноядные животные — консументы I порядка. Хищники, поедающие растительноядных жертв, выступают в роли консументов II порядка. При переходе от одного звена к другому энергия неизбежно теряется, поэтому в пищевой цепи редко бывает более 5-6 участников. Завершают круговорот редуценты — бактерии и грибы разлагают трупы животных, остатки растений, превращая органику в минеральные вещества, которые снова усваиваются продуцентами.

    В пищевую цепь входят все растения и животные, а также содержащиеся в воде химические элементы, необходимые для фотосинтеза. Пищевая цепь представляет собой связную линейную структуру из звеньев, каждое из которых связано с соседними звеньями отношениями «пища - потребитель». В качестве звеньев цепи выступают группы организмов, например, конкретные биологические виды . В воде пищевая цепь начинается с мель- чайших растительных организмов — водорослей, живущих в эвфотической зоне и использующих солнечную энергию для синтеза органических веществ из растворенных в воде неорганических химических питательных веществ и угле- кислоты. В процессе переноса энергии пищи от ее источника — растений — через ряд организмов, происходящих путем поедания одних организмов другими, наблюдается рассеивание энергии, часть которой переходит в тепло. При каждом очередном переходе от одного трофического звена (ступени) к другому теряется до 80-90% потенциальной энергии. Это ограничивает возможное число этапов, или звеньев цепи, обычно до четырех-пяти. Чем короче пищевая цепь, тем большее количество доступной энергии сохраняется.

    В среднем из 1 тыс. кг растений образуется 100 кг тела травоядных животных. Хищники, поедающие травоядных, могут построить из этого количества 10 кг своей биомассы, а вторичные хищники только 1 кг. Например, человек съедает большую рыбу. Ее пищу составляют мелкие рыбы, потребляющие зоопланктон, который живет за счет фитопланктона, улавливающего солнечную энергию.

    Таким образом, для построения 1 кг тела человека требуется 10 тыс. кг фитопланктона. Следовательно, масса каждого последующего звена в цепи прогрессивно уменьшается. Эта закономерность носит название правила экологической пирамиды. Различают пирамиду чисел, отражающую число особей на каждом этапе пищевой цепи, пирамиду биомассы — количество синтезированного на каждом уровне органического вещества и пирамиду энергии — количество энергии в пище. Все они имеют одинаковую направленность, различаясь в абсолютном значении цифровых величин. В реальных условиях цепи питания могут иметь разное число звеньев. Кроме того, цепи питания могут перекрещиваться, образуя сети питания. Почти все виды животных, за исключением очень специализированных в пищевом отношении, используют не один какой-нибудь источник пищи, а несколько). Чем больше видовое разнообразие в биоценозе, тем он устойчивее. Так, в цепи питания растения-заяц-лиса — всего три звена. Но лиса питается не только зайцами, но и мышами и птицами. Общая закономерность состоит в том, что в начале пищевой цепи всегда находятся зеленые растения, а в конце — хищники. С каждым звеном в цепи организмы становятся крупнее, они медленнее размножаются, их число уменьшается. Виды, занимающие положение низших звеньев, хотя и обеспечены питанием, но сами интенсивно потребляются (мышей, например, истребляют лисы, волки, совы). Отбор идет в направлении увеличения плодовитости. Такие организмы превращаются в кормовую базу высших животных без всяких перспектив прогрессивной эволюции.

    В любой геологической эпохе с наибольшей скоростью эволюционировали организмы, стоящие на высшем уровне в пищевых взаимоотношениях, например в девоне — кистепрые рыбы — рыбоядные хищники; в каменноугольном периоде — хищные стегоцефалы. В пермском — рептилии, охотившиеся на стегоцефалов. На протяжении всей мезозойской эры млекопитающие истреблялись хищными рептилиями и только вследствие вымирания последних в конце мезозоя заняли господствующее положение, дав большое число форм.

    Пищевые отношения — самый важный, но не единственный тип отношений между видами в биоценозе. Один вид может влиять на другой разными путями. Организмы могут поселяться на поверхности или внутри тела особей другого вида, могут формировать среду обитания для одного или нескольких видов, влиять на движение воздуха, температуру, освещенность окружающего пространства. Примеры связей, влияющих на местообитания видов, многочисленны. Морские желуди — морские ракообразные, ведущие сидячеприкрепленный образ жизни, нередко поселяются на коже китов. Личинки многих мух живут в коровьем навозе. Особенно большая роль в создании или изменении среды для других организмов, принадлежит растениям. В зарослях растений, будь то лес или луг, температура колеблется в меньшей степени, чем на открытых пространствах, а влажность выше.
    Нередко один вид участвует в распространении другого. Животные переносят семена, споры, пыльцу растений, а также других более мелких животных. Семена растений могут захватываться животными при случайном соприкосновении, особенно если семена или соплодия имеют специальные зацепки, крючки (череда, лопух). При поедании плодов, ягод, не поддающихся перевариванию, семена выделяются вместе с пометом. Млекопитающие, птицы и насекомые переносят на своем теле многочисленных клещей.

    Все эти многообразные связи обеспечивают возможность существования видов в биоценозе, удерживают их друг возле друга, превращая в стабильные саморегулирующиеся сообщества.

    Связь между двумя звеньями устанавливается, если одна группа организмов выступает в роли пищи для другой группы. Первое звено цепи не имеет предшественника, то есть организмы из этой группы в качестве пищи не использует другие организмы, являясь продуцентами . Чаще всего на этом месте находятся растения , грибы , водоросли . Организмы последнего звена в цепи не выступают в роли пищи для других организмов.

    Каждый организм обладает некоторым запасом энергии, то есть можно говорить о том, что у каждого звена цепи есть своя потенциальная энергия . В процессе питания потенциальная энергия пищи переходит к её потребителю.

    Все виды, образующие пищевую цепь, существуют за счет органического вещества, созданного зелеными растениями. При этом действует важная закономерность, связанная с эффективностью использования и превращения энергии в процессе питания. Сущность ее заключается в следующем.

    Суммарно лишь около 1% лучистой энергии Солнца, падающей на растение, превращается в потенциальную энергию химических связей синтезированных органических веществ и может быть использовано в дальнейшем гетеротрофными организмами при питании. Когда животное поедает растение, большая часть энергии, содержащейся в пище, расходуется на различные процессы жизнедеятельности, превращаясь при этом в тепло и рассеиваясь. Только 5-20% энергии пищи переходит во вновь построенное вещество тела животного. Если хищник поедает травоядное животное, то снова теряется большая часть заключенной в пище энергии. Вследствие таких больших потерь полезной энергии пищевые цепи не могут быть очень длинными: обычно они состоят не более чем из 3-5 звеньев (пищевых уровней).

    Всегда количество растительного вещества, служащего основой цепи питания, в несколько раз больше, чем общая масса растительноядных животных, а масса каждого из последующих звеньев пищевой цепи также уменьшается. Эту очень важную закономерность называют правилом экологической пирамиды.

    При переносе потенциальной энергии от звена к звену до 80-90 % теряется в виде теплоты. Данный факт ограничивает длину цепи питания, которая в природе обычно не превышает 4-5 звеньев. Чем длиннее трофическая цепь, тем меньше продукция её последнего звена по отношению к продукции начального.

    В Байкале пищевая цепь в пелагиали состоит из пяти звеньев: водоросли — эпишура — мак- рогектопус — рыбы — нерпа или хищные рыбы (ленок, таймень, взрослые особи омуля и др.). Человек участвует в этой цепи как последнее звено, но он может потреблять продукцию и более низких звеньев, например, рыб или даже беспозвоночных при использовании в пищу ракообразных, водных растений и т. п. Короткие трофические цепи менее устойчивы и подвержены большим колебаниям, чем длинные и сложные по структуре.

    2. УРОВНИ И СТРУКТУРНЫЕ ЭЛЕМЕНТЫ ПИЩЕВОЙ ЦЕПИ

    Обычно для каждого звена цепи можно указать не одно, а несколько других звеньев, связанных с ним отношением «пища - потребитель». Так траву едят не только коровы, но и другие животные, а коровы являются пищей не только для человека. Установление таких связей превращает пищевую цепь в более сложную структуру - трофическую сеть .

    В некоторых случаях в трофической сети можно сгруппировать отдельные звенья по уровням таким образом, что звенья одного уровня выступают для следующего уровня только в качестве пищи. Такая группировка называется трофическими уровнями .

    Начальным уровнем (звеном) всякой трофической (пищевой) цепи в водоеме являются растения (водоросли). Растения никого не поедают (за исключением небольшого числа видов насекомоядных растений — росянка, жирянка, пузырчатка, непентес и некоторые другие), напротив, они являются источником жизни для всех животных организмов. Поэтому первой ступенью цепи хищников являются травоядные (пастбищные) животные. Следом за ними идут мелкие плотоядные, питающиеся травоядными, затем звено более крупных хищников. В цепи каждый последующий организм крупнее предыдущего. Цепи хищников способствуют устойчивости трофической цепочки.

    Пищевая цепь сапрофитов – это замыкающее звено трофической цепочки. Сапрофиты питаются мертвыми организмами. Химические вещества, образующиеся при разложении мертвых организмов, снова потребляются растениями – организмами-продуцентами, с которых начинаются все трофические цепи.

    3. ТИПЫ ТРОФИЧЕСКИХ ЦЕПЕЙ

    Есть несколько классификаций трофических цепей.

    По первой классификации существуют в Природе три трофические цепи (трофическая — значит, обусловленная Природой для разрушения).

    Первая трофическая цепь объединяет следующие свободно живущие организмы:

      растительноядные животные;

      хищники — плотоядные животные;

      всеядные, включая человека.

      Основной принцип трофической цепи: «Кто кого ест?»

      Вторая трофическая цепь объединяет живые существа, которые метаболизируют все и всех. Эту задачу выполняют редуценты. Они доводят сложные вещества погибших организмов до простых веществ. Свойство биосферы — все представители биосферы смертны. Биологическая задача редуцентов — разлагать умерших.

      По второй классификации, существует два основных типа трофических цепей — пастбищные и детритные.

      В пастбищной трофической цепи (цепь выедания) основу составляют автотрофные организмы, затем идут потребляющие их растительноядные животные (например, зоопланктон, питающийся фитопланктоном), потом хищники (консументы) 1-го порядка (например, рыбы, потребляющие зоопланктон), хищники 2-го порядка (например, судак, питающийся другими рыбами). Особенно длинны трофические цепи в океане, где многие виды (например, тунцы) занимают место консументов 4-го порядка.

      В детритных трофических цепях (цепи разложения), наиболее распространенных в лесах, большая часть продукции растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь затем разложению сапротрофными организмами и минерализации. Таким образом, детритные трофические цепи начинаются от детрита, идут к микроорганизмам, которые им питаются, а затем к детритофагам и к их потребителям — хищникам. В водных экосистемах (особенно в эвтрофных водоемах и на больших глубинах океана) значит, часть продукции растений и животных также поступает в детритные трофические цепи.

      ЗАКЛЮЧЕНИЕ

      Все живые организмы, населяющие нашу планету, существуют не сами по себе, они зависят от окружающей среды и испытывают на себе ее воздействия. Это точно согласованный комплекс множества факторов окружающей среды, и приспособление к ним живых организмов обуславливает возможность существования всевозможных форм организмов и самого различного образования их жизни.

      Главная функция биосферы заключается в обеспечении круговорота химических элементов, который выражается в циркуляции веществ между атмосферой, почвой, гидросферой и живыми организмами.

      Все живые существа являются объектами питания других, т.е. связаны между собой энергетическими отношениями. Пищевые связи в сообществах — это механизмы передачи энергии от одного организма к другому. В каждом сообществе трофические связи переплетены в сложную сеть .

      Организмы любого вида являются потенциальной пищей многих других видов

      трофические сети в биоценозах очень сложные, и создается впечатление, что энергия, поступающая в них, может долго мигрировать от одного организма к другому. На самом деле путь каждой конкретной порции энергии, накопленной зелеными растениями, короток; она может передаваться не более, чем через 4-6 звеньев ряда, состоящего из последовательно питающихся друг другом организмов. Такие ряды, в которых можно проследить пути расходования изначальной дозы энергии, называют цепями питания. Место каждого звена в цепи питания называют трофическим уровнем. Первый трофический уровень — это всегда продуценты, создатели органической массы; растительные консументы относятся ко второму трофическому уровню; плотоядные, живущие за счет растительноядных форм — к третьему; потребляющие других плотоядных — к четвертому и т.д. Таким образом, различают консументов первого, второго и третьего порядков, занимающих разные уровни в цепях питания. Естественно, что основную роль при этом играет пищевая специализация консументов. Виды с широким спектром питания включаются в пищевые цепи на разных трофических уровнях.

      СПИСОК ЛИТЕРАТУРЫ

    1. Акимова Т.А., Хаскин В.В. Экология. Учебное пособие. –М.: ДОНИТИ, 2005.

      Моисеев А.Н. Экология в современном мире // Энергия. 2003. № 4.

    Надежда Личман
    НОД «Пищевые цепочки в лесу» (подготовительная группа)

    Цель. Дать детям представление о взаимосвязях, существующих в природе, о пищевых цепочках.

    Задачи.

    Расширять знания детей о взаимосвязи растений и животных, их пищевой зависимости друг от друга;

    Формировать умения составлять пищевые цепочки, обосновывать их;

    Развивать речь детей, отвечая на вопросы воспитателя; обогащать словарь новыми словами: взаимосвязь в природе, звено, цепочка, пищевая цепочка.

    Развивать внимание детей, логическое мышление.

    Способствовать воспитанию интереса к природе, любознательности.

    Методы и приёмы:

    Наглядный;

    Словесный;

    Практический;

    Проблемно-поисковый.

    Формы работы: беседа, задание, объяснение, дидактическая игра.

    Образовательные области развития: познавательное развитие, речевое развитие, социально коммуникативное развитие.

    Материал: игрушка бибабо бабушка, игрушка сова, иллюстрации растений и животных (клевер, мышь, сова, трава, заяц, волк, карточки растений и животных (листик, гусеница, птица, колоски, мышь, лиса, часы, воздушный шар, макет луга, эмблемы зеленого и красного цвета по количеству детей.

    Рефлексия.

    Дети сидят на стульчиках полукругом. Стук в дверь. В гости приходит бабушка (кукла бибабо).

    Здравствуйте, ребята! Приехала я к вам в гости. Хочу рассказать вам историю, которая произошла у нас в деревне. Живём мы возле леса. Жители нашей деревни пасут коров на лугу, который находится между деревней и лесом. Коровы наши питались клевером и давали много молока. На краю леса, в дупле старого большого дерева жила сова, которая днем спала, а ночью летала на охоту и громко ухала. Крик совы мешал жителям деревни спать, и они её прогнали. Сова обиделась и улетела. И вдруг через некоторое время коровы стали худеть и, давать очень мало молока, так как стало мало клевера, зато появилось много мышей. Мы не можем понять, почему так произошло. Помогите нам все вернуть назад!

    Целеполагание.

    Ребята, как вы думаете, сможем мы помочь бабушке и жителям деревни? (Ответы детей)

    Чем же мы можем помочь жителям деревни? (Ответы детей)

    Совместная деятельность детей и педагога.

    Почему произошло так, что коровы стали давать мало молока?

    (Стало мало клевера.) Воспитатель выкладывает на столе картинку клевера.

    Почему стало мало клевера?

    (Погрызли мыши.) Воспитатель выкладывает картинку мыши.

    Почему развелось много мышей? (Сова улетела.)

    Кто охотился на мышей?

    (Некому охотиться, сова улетела.) Выкладывается картинка совы.

    Ребята, у нас с вами получилась цепочка: клевер - мышь - сова.

    Вы знаете, какие ещё бывают цепочки?

    Воспитатель показывает украшение цепочку, дверную цепочку, картинку с изображением собаки на цепи.

    Что такое цепочка? Из чего она состоит? (Ответы детей)

    Из звеньев.

    Если одно звено цепи сломается, что случится с цепочкой?

    (Цепочка порвется, разрушится.)

    Правильно. Посмотрим на нашу цепочку: клевер - мышь - сова. Такая цепочка называется пищевой. Почему, как вы думаете? Клевер является пищей для мыши, мышь является пищей для совы. Поэтому цепочка называется пищевой. Клевер, мышь, сова - звенья этой цепочки. Подумайте, а можно ли из нашей пищевой цепочки убрать звено?

    Нет, цепочка разрушится.

    Уберем из нашей цепочки клевер. Что произойдет с мышами?

    Им нечего будет есть.

    Если исчезнут мыши?

    Если улетит сова?

    Какую ошибку совершили жители деревни?

    Они разрушили пищевую цепочку.

    Правильно. Какой вывод сделаем?

    Оказывается в природе все растения и животные взаимосвязаны. Они друг без друга обходиться не могут. Что нужно сделать, чтобы коровы снова давали много молока?

    Вернуть сову, восстановить пищевую цепочку. Дети зовут сову, сова возвращается в дупло старого большого дерева.

    Вот мы и помогли бабушке и всем жителям деревни, вернули всё назад.

    А сейчас мы с вами и с бабушкой поиграем в дидактическую игру «Кто кого ест»?», потренируемся и потренируем бабушку в составлении пищевых цепочек.

    Но сначала вспомним, кто живёт в лесу?

    Звери, насекомые, птицы.

    Как называются животные и птицы, которые питаются растениями?

    Травоядные.

    Как называются животные и птицы, которые питаются другими животными?

    А как называются животные и птицы, которые питаются и растениями и другими животными?

    Всеядные.

    Перед вами картинки животных, птиц. На картинках с изображением животных и птиц наклеены кружочки разного цвета. Хищные животные и птицы отмечены красным кружком.

    Травоядные животные и птицы отмечены зелёным кружком.

    Всеядные – синим кружком.

    У детей на столах наборы картинок птиц, зверей, насекомых и карточки с жёлтым кружочком.

    Послушайте правила игры. У каждого игрока свое поле, ведущий показывает картинку и называет животного, вы должны составить правильно пищевую цепочку, кто кого ест:

    1клеточка - это растения, карточка с жёлтым кружочком;

    2 клеточка - это животные, которые питаются растениями (травоядные - с зелёным кружочком, всеядные – с синим кружочком);

    3 клеточка - это животные, которые питаются животными (хищники – с красным кружочком; всеядные – синим). Карточки с черточкой закрывают вашу цепочку.

    Выигрывает тот, кто правильно соберёт цепочку, она может быть длинная или короткая.

    Самостоятельная деятельность детей.

    Растения – мышь – сова.

    Берёза – заяц - лиса.

    Семена сосны – белка – куница – ястреб.

    Трава – лось – медведь.

    Трава – заяц – куница – филин.

    Орехи – бурундук - рысь.

    Жёлуди – кабан – медведь.

    Зерно злаков – мышь полёвка – хорёк – сова.

    Трава – кузнечик – лягушка – змея – сокол.

    Орехи – белка – куница.

    Рефлексия.

    Вам понравилось наше с вами общение?

    Что вам понравилось?

    Что нового вы узнали?

    Кто запомнил, что такое пищевая цепочка?

    Важно ли её сохранение?

    В природе все взаимосвязано, и очень важно, чтобы эта взаимосвязь сохранялась. Все обитатели леса являются важными и ценными членами лесного братства. Очень важно чтобы человек не мешал природе, не засорял окружающую среду и бережно относился к животным и к растительному миру.

    Литература:

    Основная образовательная программа дошкольного образования От рождения до школы под редакцией Н. Е. Вераксы, Т. С. Комаровой, М. А. Васильевой. Мозаика – Синтез. Москва, 2015.

    Коломина Н. В. Воспитание основ экологической культуры в детском саду. М: ТЦ Сфера, 2003.

    Николаева С. Н. Методика экологического воспитания дошкольников. М, 1999.

    Николаева С. Н. Познаем природу - готовимся к школе. М. : Просвещение, 2009.

    Салимова М. И. Занятия по экологии. Минск: Амалфея, 2004.

    Есть много праздников в стране,

    Но женский день отдан Весне,

    Ведь только женщинам подвластно

    Создать весенний праздник - лаской.

    От всей души всех поздравляю

    С Международным Женским днём !

    Публикации по теме:

    «Детям о безопасности». Основные правила безопасного поведения для детей дошкольного возраста в стихах «Детям о безопасности» Основные правила безопасного поведения для детей дошкольного возраста в стихах. Цель мероприятия: Воспитывать.

    Формирование понимания синонимичных значений слов у детей старшего дошкольного возраста в различных видах деятельности Система проводится в несколько этапов. Вначале синонимы вводятся в пассивный словарь детей. Ознакомление детей с близкими по смыслу словами.

    Консультация для родителей «Какие игрушки нужны детям старшего дошкольного возраста» В наше время выбор игрушек для детей столь многообразен и интересен, что для каждого родителя, заинтересованного в развитии своего ребенка,.

    Консультация для родителей «Мультик детям не игрушка» для детей старшего дошкольного возраста КОНСУЛЬТАЦИЯ ДЛЯ РОДИТЕЛЕЙ «Мультик детям не игрушка!» Многих родителей беспокоит вопрос взаимоотношения ребёнка и телевизора. Что смотреть?.

    Краткосрочный творческий проект «Детям о войне» для детей старшего дошкольного возраста. Тип проекта: По доминирующей в проекте деятельности: информационный. По числу участников проекта: групповой (дети подготовительной к школе.

    Конспект занятия-беседы «О войне детям» для старшего дошкольного возраста Вид деятельности: Рассказ воспитателя «О войне детям». Просмотр фото презентации. Образовательная область: Познавательное развитие. Цель:.

    Педагогический проект «Детям дошкольного возраста о празднике Рождество Христово» Педагогический проект «Детям дошкольного возраста о празднике Рождество Христово».

    Привитие детям дошкольного возраста основ здорового образа жизни в разных видах деятельности Воспитатель - удивительная профессия. Еще один ее плюс в том, что она дает возможность заглянуть в страну детства, в мир ребенка. И хоть.

    Развитие у детей дошкольного возраста ценностно-смыслового восприятия и понимания произведений искусства В наше время основной целью образования является подготовка всесторонне гармонично развитой личности ребенка. Творчество – это тот путь,.

    Сказка и игры для облегчения детям понимания времен года СКАЗКА И ИГРЫ ДЛЯ ОБЛЕГЧЕНИЯ ДЕТЯМ ПОНИМАНИЯ ВРЕМЕН ГОДА «Четыре дочери года». Давным-давно было так: сегодня солнце припекает, цветочки.

    Библиотека изображений:

    Тема урока: «Кто что ест? Цепи питания».

    Тип урока: изучение нового материала.

    Учебник: “Мир вокруг нас 3 класс 1 часть” (авт. А.А. Плешаков)

    Цели и задачи урока

    Цель: обобщить знания учащихся о разнообразии животного мира, о группах животных по типу питания, о цепях питания,о размножении и стадиях развития, приспособленности к защите от врагов и охране животных.

    Задачи:

    1. Способствовать обогащению и развитию субъективных представлений о жизни животных.

    2. Способствовать формированию умения у детей составлять, "читать", схемы, моделировать экологические связи.

    3. Способствовать развитию умений и навыков самостоятельной и групповой работы.

    4. Создать условия для развития логического мышления;

    5. Воспитывать чувство ответственности за все живое, что нас окружает, чувство любви к природе.

    Оборудование урока

    Компьютер.

    Листы с заданиями.Карточки с ребусами.

    Мультимедийный проектор.

    Учебник: Плешаков А.А. Мир вокруг нас. - М., Просвещение, 2007г.

    Доска

    Ход урока.

    1 .Организационный момент.

    2. Сообщение темы урока и постановка проблемы.

    (Приложение слайд 1)

    Ребята, посмотрите внимательно на слайд. Подумайте, чем связаны между собой эти представители живой природы. Кто по данному слайду определит тему нашего урока?

    (Мы будем говорить о том, кто как питается.)

    Правильно! Если внимательно посмотреть на слайд, то видно, что все предметы соединены стрелочками в цепочку по способу питания. В экологии такие цепочки называются экологическими цепями, или цепями питания. Отсюда тема нашего урока “Кто что ест? Цепи питания”.

    3. Актуализация знаний.

    Чтобы проследить разные цепи питания, попробовать их составить самим, нам нужно вспомнить, а кто как питается. Начнем с растений. В чем особенность их питания? Расскажите, опираясь на таблицу.

    (Приложение слайд 3)

    (Растения получают из воздуха углекислый газ. Корнями из почвы они поглощают воду и растворенные в ней соли. Под действием солнечного света растения превращают углекислый газ, воду и соли в сахар и крахмал. Их особенность заключается в том, что они сами готовят пищу.)

    А теперь давайте вспомним, на какие группы по способу питания делятся животные и чем они отличаются друг от друга.

    (Растительноядные животные питаются растительной пищей. Насекомоядные поедают насекомых. Хищные животные питаются плотью других животных, поэтому еще называются плотоядными. Всеядные животные питаются растительной и животной пищей.)

    (Приложение слайд 4)

    4. Открытие нового знания .

    Цепи питания – это связи всего живого по питанию. Цепей питания в природе очень много. В лесу они одни, совершенно иные на лугу и в водоеме, третьи в поле и в саду. Я предлагаю вам выступить в роли ученых-экологов и заняться поисковой деятельностью. Все группы отправятся в разные места. Вот маршруты ученых-экологов.

    (Приложение слайд 5)

    Где вам придется трудиться, решит жеребьевка.

    От каждой группы приглашаю по одному человеку, и они вытаскивают карточку с названием места. Эти же ребята получают листы со стрелками и по 4 карточки с изображением растений и животных.

    А теперь послушайте задание. Каждая группа, используя карточки, должна составить цепь питания. Карточки прикрепляются к листу со стрелками скрепками. Сразу договоритесь, кто будет представлять вашу цепь классу. Подумайте, все ли карточки вам понадобятся.

    По сигналу ребята начинают работать в группах . Тем , кто закончил раньше , предлагаются загадки .

    (Приложение слайд 6)

    Все готовые цепи развешиваются на доске .

    В лесу растет сосна. Под корой сосны живет жук–короед и ею питается. В свою очередь жук–короед является пищей для дятлов. У нас была лишняя картинка – коза. Это домашнее животное и в эту цепь питания не входит.

    Давайте проверим работу ребят.

    (Приложение слайд 7)

    Таким же образом объясняют свои цепи и другие группы.

    2) Поле: рожь – мышь – змея (лишняя – рыба).

    (Приложение слайд 8)

    3) Огород: капуста – слизни – жаба (лишний – медведь).

    (Приложение слайд 9)

    4) Сад: яблоня – яблонная тля – божья коровка (лишняя – лиса).

    (Приложение слайд 10)

    5) Водоем: водоросли – карась – щука (лишний – заяц).

    (Приложение слайд 11)

    Все цепи у нас на доске . Давайте понаблюдаем , из каких звеньев они состоят . Что есть на каждой таблице ? Что стоит на первом месте ? На втором ? На третьем ?

    (Растение. Животное растительноядное. Животное хищное, насекомоядное или всеядное.)

    5. Первичное закрепление знания.

    1.Работа по учебнику.стр96-97.

    А теперь, ребята, давайте познакомимся со статьей учебника и проверим себя. Дети открывают учебник с. 96–97 и про себя читают статью “Цепи питания”.

    – Какие цепи питания приведены в учебнике?

    Осина – заяц – волк.

    Дубы – лесные мыши – совы.

    В каком порядке расположены звенья в цепи питания?

    I звено – растения;

    II звено – растительноядные животные;

    III звено – остальные животные.

    (Приложение слайд 12)

    2) Повторение правил поведения в лесу.

    Вот мы и в лесу. Послушайте звуки леса, посмотрите на разнообразие его обитателей. А знаете ли вы, как нужно вести себя в лесу?

    1. Не ломать ветки деревьев и кустарников.

    2.Не срывать и затаптывать цветы и лекарственные растения.

    3.Не ловить бабочек, стрекоз и других насекомых.

    4.Не уничтожать лягушек, жаб.

    5.Не трогать птичьи гнезда.

    6.Не приносить из леса животных домой.

    Открывается слайд 6 (приложение) с изображениями совы, мышей и желудей. Учащиеся составляют цепь питания, перемещая картинки.

    Кто крупнее в этой цепи питания?

    Крупнее всех – сова, а мышь крупнее желудя.

    Если бы у нас были волшебные весы, и мы бы взвесили всех сов, мышей и желуди, то оказалось бы, что желуди тяжелее мышей, а мыши тяжелее сов. Как вы думаете, почему?

    Потому, что желудей в лесу очень, очень много, мышей много, а сов – мало.

    И это не случайно. Ведь одной сове для питания надо много мышей, а одной мышке – множество желудей. Получается экологическая пирамида.

    Обобщающий вывод :

    В природе все и всё связано между собой. Сети питания переплетаются и образуют пищевую сеть. Растения и животные образуют экологические пирамиды. В основании – растения, а на вершине – хищные животные.

    6 .Знакомство с понятием “сеть питания”

    Цепи питания в природе не так просты как в нашем примере. Зайца могут поедать и другие животные. Какие? (лиса, рысь, волк)

    Мышь может стать добычей лисы, совы, рыси, кабана, ежа.

    Многие растительноядные животные служат пищей разным хищникам.

    Поэтому цепи питания разветвлены, они могут переплетаться между собой, образуя сложную сеть питания.

    7.Проблемная ситуация .

    Ребята, что произойдет, если в лесу исчезнут все деревья, которыми питается заяц? (Зайцу нечего буде есть)

    – А если не будет зайцев? (То не будут пищи и лисе, и волку)

    – Что произойдёт с цепочкой? (Она разрушится)

    Какой вывод можно сделать? (Если разрушить хоть одно звено в цепи, то разрушится и вся цепочка.)

    8.Составить несколько возможных цепей питания

    9. Итог занятия. Обобщение по теме.

    Рефлексия.

    “Договори фразу”.

    Животные и растения связаны между собой в ……………………

    В основе цепи питания находятся ………………………………..

    А заканчивают цепь – ………………………………………..

    В природе цепи питания переплетаются между собой, образуя

    …………………………………………

    Домашнее задание .

    1.Приготовить сообщение об одном из друзей Березы;

    2.Выполнить задания №4 из пособия «Окружающий мир» (на рисунке изображен участок сада. Составить несколько возможных цепей питания).